机器学习实战 | SKLearn入门与简单应用案例

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 本篇内容介绍了SKLearn的核心板块,并通过SKLearn自带的数据集,讲解一个典型应用案例。

ShowMeAI研究中心

作者:韩信子@ShowMeAI
教程地址http://www.showmeai.tech/tutorials/41
本文地址http://www.showmeai.tech/article-detail/202
声明:版权所有,转载请联系平台与作者并注明出处

收藏ShowMeAI查看更多精彩内容


引言

在前面的机器学习案例中,我们使用了 Python 机器学习工具库 Scikit-Learn ,它建立在 NumPy、SciPy、Pandas 和 Matplotlib 之上,也是最常用的 Python 机器学习工具库之一,里面的API的设计非常好,所有对象的接口简单,很适合新手上路。ShowMeAI在本篇内容中对 Scikit-Learn 做一个介绍。

入门与简单应用案例; SKLearn & Python; SKLearn; 2-1

1.SKLearn是什么

Scikit-Learn 也简称 SKLearn,是一个基于 Python 语言的机器学习工具,它对常用的机器学习方法进行了封装,例如,分类、回归、聚类、降维、模型评估、数据预处理等,我们只需调用对应的接口即可。

入门与简单应用案例; SKLearn—; 分类 / 回归 / 聚类; SKLearn; 2-2

入门与简单应用案例; SKLearn—降维 / 模型; 评估 / 数据预处理; SKLearn; 2-3

在 SKLearn 的官网上,写着以下四点介绍:

  • 一个简单高效的数据挖掘和数据分析工具。
  • 构建在 NumPy,SciPy 和 Matplotlib 上。
  • 可供大家在各种环境中重复使用。
  • 开源,可商业使用–BSD许可证。

SKLearn 官网:https://scikit-learn.org/stable/

SKLearn 的快速使用方法也推荐大家查看ShowMeAI的文章和速查手册 AI建模工具速查|Scikit-learn使用指南

2.安装SKLearn

安装 SKLearn 非常简单,命令行窗口中输入命令:

pip install scikit-learn

我们也可以使用清华镜像源安装,通常速度会更快一些:

pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

3.SKLearn常用接口

对于机器学习整个流程中涉及到的常用操作,SKLearn 中几乎都有现成的接口可以直接调用,而且不管使用什么处理器或者模型,它的接口一致度都非常高。

3.1 数据集导入

更多数据集请参考SKLearn官网:https://scikit-learn.org/stable/modules/classes.html?highlight=dataset#module-sklearn.datasets

入门与简单应用案例; SKLearn常用接口; 数据集导入; SKLearn; 2-4

#鸢尾花数据集
from sklearn.datasets import load_iris
#乳腺癌数据集
from sklearn.datasets import load_breast_cancer
#波士顿房价数据集
from sklearn.datasets import load_boston

3.2 数据预处理

官网链接:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing

入门与简单应用案例; SKLearn常用接口; 数据预处理; SKLearn; 2-5

#拆分数据集
from sklearn.model_selection import train_test_split
#数据缩放
from sklearn.preprocessing import MinMaxScaler

3.3 特征抽取

官网链接:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction

入门与简单应用案例; SKLearn常用接口; 特征抽取; SKLearn; 2-6

from sklearn.feature_extraction import DictVectorizer
v = DictVectorizer(sparse=False)
D = [{'foo': 1, 'bar': 2}, {'foo': 3, 'baz': 1}]
X = v.fit_transform(D)

3.4 特征选择

官网链接:https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection

入门与简单应用案例; SKLearn常用接口; 特征选择; SKLearn; 2-7

from sklearn.datasets import load_digits
from sklearn.feature_selection import SelectKBest, chi2
X, y = load_digits(return_X_y=True)
## 特征选择
X_new = SelectKBest(chi2, k=20).fit_transform(X, y)

3.5 常用模型

官网链接:https://scikit-learn.org/stable/modules/classes.html

入门与简单应用案例; SKLearn常用接口; 常用模型; SKLearn; 2-8

#KNN模型
from sklearn.neighbors import KNeighborsClassifier
#决策树
from sklearn.tree import DecisionTreeClassifier
#支持向量机
from sklearn.svm import SVC
#随机森林
from sklearn.ensemble import RandomForestClassifier

3.6 建模拟合与预测

入门与简单应用案例; SKLearn常用接口; 建模拟合与预测; SKLearn; 2-9

#拟合训练集
knn.fit(X_train,y_train)
#预测
y_pred=knn.predict(X_test)

3.7 模型评估

官网链接:https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics

入门与简单应用案例; SKLearn常用接口; 模型评估; 2-10

#求精度
knn.score(X_test,y_test)
#绘制混淆矩阵
from sklearn.metrics import confusion_matrix
#绘制ROC曲线
from sklearn.metrics import roc_curve,roc_auc_score

3.8 典型的建模流程示例

典型的一个机器学习建模应用流程遵循【数据准备】【数据预处理】【特征工程】【建模与评估】【模型优化】这样的一些流程环节。

## 加载数据
import numpy as np
import urllib
## 下载数据集
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"
raw_data = urllib.urlopen(url)
## 加载CSV文件
dataset = np.loadtxt(raw_data, delimiter=",")
## 区分特征和标签
X = dataset[:,0:7]
y = dataset[:,8]


## 数据归一化
from sklearn import preprocessing
## 幅度缩放
scaled_X = preprocessing.scale(X)
## 归一化
normalized_X = preprocessing.normalize(X)
## 标准化
standardized_X = preprocessing.scale(X)

## 特征选择
from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier
model = ExtraTreesClassifier()
model.fit(X, y)
## 特征重要度
print(model.feature_importances_)

## 建模与评估
from sklearn import metrics
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X, y)
print('MODEL')
print(model)
## 预测
expected = y
predicted = model.predict(X)
## 输出评估结果
print('RESULT')
print(metrics.classification_report(expected, predicted))
print('CONFUSION MATRIX')
print(metrics.confusion_matrix(expected, predicted))

## 超参数调优
from sklearn.model_selection import GridSearchCV
param_grid = {'penalty' : ['l1', 'l2', 'elasticnet'],
              'C': [0.1, 1, 10]}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)

参考资料

机器学习【算法】系列教程

机器学习【实战】系列教程

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
3月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
19天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
57 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
2月前
|
机器学习/深度学习 数据采集
机器学习入门——使用Scikit-Learn构建分类器
机器学习入门——使用Scikit-Learn构建分类器
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 TensorFlow API
机器学习实战:TensorFlow在图像识别中的应用探索
【10月更文挑战第28天】随着深度学习技术的发展,图像识别取得了显著进步。TensorFlow作为Google开源的机器学习框架,凭借其强大的功能和灵活的API,在图像识别任务中广泛应用。本文通过实战案例,探讨TensorFlow在图像识别中的优势与挑战,展示如何使用TensorFlow构建和训练卷积神经网络(CNN),并评估模型的性能。尽管面临学习曲线和资源消耗等挑战,TensorFlow仍展现出广阔的应用前景。
76 5
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
44 2
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
103 0
|
2月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
38 1
|
2月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
65 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
38 0