Python遇见机器学习 ---- k近邻(kNN)算法(一)

简介: 所谓:“近朱者赤,近墨者黑”

本文采用编译器:jupyter


k近邻(简称kNN)算法是一种常用的监督学习算法, 其工作机制非常简单 : 给定测试样本,基于某种距离度量找出训练集中与其最靠近的 k个训练样本,然后基于这 k个"邻居"的信息来进行预测。


通常, 在分类任务中可使用"投票法" 即选择这 k个样本中出现最多的类别标记作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大。


kNN算法的示意图如下,可以很明显的看出当k取值不同时,判别结果可能产生较大的差异。


可以看出它天然的可以解决多分类问题,思想简单却十分强大!4.png

01 kNN基础

以下为数据准备阶段

# 导入所需要的两个包
import numpy as np
import matplotlib.pyplot as plt
# 各数据点
raw_data_X = [[3.3935, 2.3312],
[3.1100, 1.7815],
[1.3438, 3.3683],
[3.5822, 4.6791],
[2.2803, 2.8669],
[7.4234, 4.6965],
[5.7450, 3.5339],
[9.1721, 2.5111],
[7.7927, 3.4240],
[7.9398, 0.7916]
]
# 各数据点所对应的标记
raw_data_y = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
X_train = np.array(raw_data_X)
y_train = np.array(raw_data_y)
#绘制散点图
plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], color='g')
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], color='r')
plt.show()
# 模拟待分类数据
x = np.array([8.0936, 3.3657])
plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], color='g')
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], color='r')
plt.scatter(x[0], x[1], color='b')
plt.show()

执行结果:

5.png6.png


kNN的过程


1.计算待测数据与所有数据点的“距离”

2.指定k的大小

3.找出模型中与待测点最近的k个点

4.应用“投票法”预测出分类结果

# 计算欧拉距离所需跟方操作
from math import sqrt
distances = []
for x_train in X_train:
    d = sqrt(np.sum((x_train - x) ** 2)) # Universal
    distances.append(d)
# distances = [sqrt(np.sum((x_train - x) ** 2)) for x_train in X_train]
nearest = np.argsort(distances) # 找离x最近的k个点的索引
# 指定k
k = 6
# 计算最近点k个点
topK_y = [y_train[i] for i in nearest[:k]]
# 使用Counter方法统计标签类别
from collections import Counter
votes = Counter(topK_y)
votes.most_common(1) # 找出票数最多的那1个类别,
# Out[22]:
# [(1, 5)]
predict_y = votes.most_common(1)[0][0] # 预测结果
predict_y
# Out[27]:
# 1

02 使用scikit_learn中的kNN


python标准库scikit_learn中也为我们封装好了kNN算法

# 导入kNN算法
from sklearn.neighbors import KNeighborsClassifier
# 创建分类器对象
kNN_classifier = KNeighborsClassifier(n_neighbors=6)
kNN_classifier.fit(X_train, y_train) # 先训练模型
“”“
fit方法返回对象本身
Out[7]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', metric_params=None, n_jobs=1, n_neighbors=6, p=2, weights='uniform')
”“”
X_predict = x.reshape(1, -1) # 传入的数据需要是一个矩阵,这里待预测的x只是一个向量
X_predict
# Out[9]:
# array([[ 8.0936, 3.3657]])
y_predict = kNN_classifier.predict(X_predict)
y_predict[0]
# Out[13]:
# 1
相关文章
|
6天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
58 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
12天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
24天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
72 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
24天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
24天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
26天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
41 2
|
28天前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
51 1
|
28天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
73 1
|
17天前
|
存储 数据挖掘 开发者
Python编程入门:从零到英雄
在这篇文章中,我们将一起踏上Python编程的奇幻之旅。无论你是编程新手,还是希望拓展技能的开发者,本教程都将为你提供一条清晰的道路,引导你从基础语法走向实际应用。通过精心设计的代码示例和练习,你将学会如何用Python解决实际问题,并准备好迎接更复杂的编程挑战。让我们一起探索这个强大的语言,开启你的编程生涯吧!
|
23天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。