人工智能和机器学习在网络安全中的7种积极和消极影响

简介: 人工智能/机器学习用于网络流量分析、入侵检测系统、入侵防御系统、安全访问服务边缘、用户和实体行为分析以及Gartner公司所描述的大多数技术领域。

人工智能(AI)和机器学习(ML)技术如今已经成为人们日常生活的一部分,其中包括网络安全。在网络安全人员的手中,人工智能/机器学习(ML)可以识别漏洞并缩短事件响应时间。但在网络罪犯手中,人工智能/机器学习(ML)则可能会造成重大伤害。


以下是人工智能/机器学习影响网络安全的七种积极方式和七种消极方式。


人工智能/机器学习对网络安全的7个积极影响




(1)欺诈和异常检测:这是人工智能工具在网络安全领域进行救援的最常见方式。复合人工智能欺诈检测引擎在识别复杂的骗局模式方面表现出色。欺诈检测系统的高级分析仪表板提供有关攻击事件的全面详细信息。这是异常检测的一般领域中极其重要的领域。


(2)电子邮件垃圾邮件过滤器:防御性规则过滤掉带有可疑词语的邮件,以识别危险的电子邮件。此外,垃圾邮件过滤器可以保护电子邮件用户,并减少处理不需要的通信所需的时间。


(3)僵尸网络检测:有监督和无监督的机器学习算法不仅有助于检测,还能防止复杂的机器人攻击。它们还有助于识别用户行为模式,以极低的误报率识别未检测到的网络攻击。


(4)漏洞管理:管理漏洞(人工管理或使用工具)可能很困难,但人工智能系统使其变得更容易。人工智能工具通过分析用户行为、端点、服务器甚至暗网上的讨论来寻找潜在漏洞,以识别代码漏洞并预测攻击。


(5)防恶意软件:人工智能技术帮助防病毒软件检测正常文件和不良文件,从而可以识别新形式的恶意软件,即使以前从未见过。虽然用基于人工智能的技术完全替代传统技术可以加快检测速度,但也会增加误报率。结合传统方法和人工智能可以检测100%的恶意软件。


(6)数据泄漏预防:人工智能帮助识别文本和非文本文档中的特定数据类型。可以训练可训练的分类器来检测不同的敏感信息类型。这些人工智能方法可以使用适当的识别算法搜索图像、语音记录或视频中的数据。


(7)SIEM和SOAR:机器学习可以使用安全信息和事件管理(SIEM)以及安全编排、自动化和响应(SOAR)工具来改进数据自动化和情报收集、检测可疑行为模式,以及根据输入自动响应。


人工智能/机器学习用于网络流量分析、入侵检测系统、入侵防御系统、安全访问服务边缘、用户和实体行为分析以及Gartner公司所描述的大多数技术领域。事实上,很难想象现代安全工具没有采用某种人工智能/机器学习技术。


人工智能/机器学习对网络安全的7个消极影响




(1)数据收集:通过社会工程和其他技术,采用机器学习技术用于更好地分析受害者,网络犯罪分子利用这些信息加速攻击。例如,在2018年,WordPress网站经历了大规模的基于机器学习的僵尸网络感染,黑客可以访问用户的个人信息。


(2)勒索软件:勒索软件正在快速增长。犯罪成功案例很多;最严重的事件之一导致Colonial 输油管道中断6天,并不得不支付了440万美元的勒索赎金。


(3)垃圾邮件、网络钓鱼和鱼叉式网络钓鱼:机器学习算法可以创建看起来像真实消息的虚假消息,旨在窃取用户凭据。在BlackHat会议的一次演讲中,John Seymour和Philip Tully详细介绍了机器学习算法如何生成带有虚假网络钓鱼链接的病毒式推文,其攻击效果是人工创建的网络钓鱼消息的四倍。


(4)Deepfakes:在语音网络钓鱼中,诈骗者使用机器学习生成的Deepfake音频技术来制造更成功的网络攻击。例如深度语音等现代算法只需要几秒钟的语音就可以模仿受害者的语音、口音和语调。


(5)恶意软件:机器学习可以隐藏跟踪节点和端点行为的恶意软件,并构建模仿受害者网络上合法网络流量的模式。它还可以在恶意软件中加入一种自毁机制,以放大网络攻击速度。人工智能算法经过训练可以比人类更快地提取数据,这使得它更难预防。


(6)密码和验证码:采用神经网络驱动的软件声称可以轻松破解人类识别系统。机器学习技术使网络犯罪分子能够分析大量密码数据集,以更好地定位密码猜测。例如,PassGAN使用机器学习算法比使用传统技术的流行密码破解工具更准确地猜测密码。


(7)攻击人工智能/机器学习本身:滥用在医疗保健、军事和其他高价值部门核心工作的算法可能会导致灾难。Berryville机器学习研究所的机器学习系统架构风险分析有助于分析已知的机器学习攻击分类法,并对机器学习算法进行架构风险分析。安全工程师必须学习如何在其生命周期的每个阶段保护机器学习算法。


人们很容易理解为什么人工智能/机器学习受到如此多的关注。而对抗复杂的网络攻击的唯一方法是利用人工智能的防御潜力。业界人士必须注意到机器学习在检测异常(例如,流量模式或人为错误)方面的强大功能。通过采用适当的对策和措施,可以防止或显著减少可能的损害。


总体而言,人工智能/机器学习在防范网络威胁方面具有巨大价值。一些政府和企业正在使用或讨论使用人工智能/机器学习来打击网络犯罪分子。虽然围绕人工智能/机器学习的隐私和道德问题是合理的,但政府部门必须确保人工智能/机器学习法规不会阻止企业使用人工智能/机器学习进行保护。因为众所周知,网络犯罪分子并不会遵守这些法规。

相关文章
|
22天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
60 3
|
11天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
13天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
12天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
42 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
34 2
|
17天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
36 2
|
28天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
下一篇
无影云桌面