Apache Spark机器学习.1.4 MLlib

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介:

1.4 MLlib


MLlib是一个可扩展的Spark机器学习库,包括很多常用的机器学习算法。MLlib内置的算法如下:

以向量和矩阵形式处理数据

基本的统计计算,例如:汇总统计和相关性、简单随机数生成、分层抽样、执行简单的假设检验

分类和回归建模

协同过滤

聚类

降维

特征提取与转换

频繁模式挖掘

开发优化

PMML模型导出

Spark MLlib还处在活跃开发阶段,预计每次新版发布都会有新的算法加入其中。

MLlib符合Apache Spark的计算哲学,简单易用,性能卓越。

MLlib使用依赖于netlib-java和jblas的线性代数包Breeze。netlib-java和jblas依赖于本地Fortran程序。如果节点没有安装gfortran运行库,用户需要自行安装。要是没有自动检测到库,MLlib会报链接错误。

关于MLib用例和详细的使用信息,请访问:http://researcher.watson.ibm.com/researcher/files/us-ytian/systemML.pdf。

其他机器学习库

正如前面讨论的,MLlib已经实现了常用的回归和分类算法。但这些基本的算法不足以支持复杂的机器学习。

如果我们等待Spark团队将所有需要的机器学习算法加入库中,则需要很长时间。正因为如此,很多第三方团队向Spark贡献了机器学习库。

IBM已经向Apache Spark贡献了机器学习库SystemML。

除了MLlib提供的功能外,SystemML提供了更丰富的机器学习算法,如缺失数据填补、SVM、GLM、ARIMA、非线性优化、图建模及矩阵分解等算法。

SystemML由IBM Almaden研究组开发,是一个分布式机器学习引擎,可以扩展到任意大的数据集,它的优势有:

整合了分散的机器学习环境

给出了Spark核心生态完整的DML集

允许数据科学家集中精力关注算法问题,而不是具体实现

提升了数据科学团队的时间价值

建立了一个事实上可重用的机器学习程序标准

SystemML参考了R 语言语法和语义,并提供通过其自己的语言编写新算法的能力。

Spark通过SparkR与R语言进行了较好的集成,用户需要时可以使用R语言众多的机器学习算法。正如后面我们要讨论的,SparkR notebook使得这些操作非常容易。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
7月前
|
分布式计算 大数据 数据处理
Apache Spark:提升大规模数据处理效率的秘籍
【4月更文挑战第7天】本文介绍了Apache Spark的大数据处理优势和核心特性,包括内存计算、RDD、一站式解决方案。分享了Spark实战技巧,如选择部署模式、优化作业执行流程、管理内存与磁盘、Spark SQL优化及监控调优工具的使用。通过这些秘籍,可以提升大规模数据处理效率,发挥Spark在实际项目中的潜力。
582 0
|
7月前
|
存储 机器学习/深度学习 Apache
如何将Apache Hudi应用于机器学习
如何将Apache Hudi应用于机器学习
68 0
|
2月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
64 1
|
5月前
|
分布式计算 大数据 Spark
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
《Spark大数据处理:技术、应用与性能优化》深入浅出介绍Spark核心,涵盖部署、实战与性能调优,适合初学者。作者基于微软和IBM经验,解析Spark工作机制,探讨BDAS生态,提供实践案例,助力快速掌握。书中亦讨论性能优化策略。[PDF下载链接](https://zhangfeidezhu.com/?p=347)。![Spark Web UI](https://img-blog.csdnimg.cn/direct/16aaadbb4e13410f8cb2727c3786cc9e.png#pic_center)
164 1
Spark大数据处理:技术、应用与性能优化(全)PDF书籍推荐分享
|
4月前
|
分布式计算 Hadoop 大数据
大数据处理框架在零售业的应用:Apache Hadoop与Apache Spark
【8月更文挑战第20天】Apache Hadoop和Apache Spark为处理海量零售户数据提供了强大的支持
78 0
|
4月前
|
分布式计算 Serverless 数据处理
EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务
Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。
235 0
|
5月前
|
分布式计算 Apache Spark
|
6月前
|
分布式计算 大数据 数据处理
Apache Spark在大数据处理中的应用
Apache Spark是大数据处理的热门工具,由AMPLab开发并捐赠给Apache软件基金会。它以内存计算和优化的执行引擎著称,提供比Hadoop更快的处理速度,支持批处理、交互式查询、流处理和机器学习。Spark架构包括Driver、Master、Worker Node和Executor,核心组件有RDD、DataFrame、Dataset、Spark SQL、Spark Streaming、MLlib和GraphX。文章通过代码示例展示了Spark在批处理、交互式查询和实时数据处理中的应用,并讨论了其优势(高性能、易用性、通用性和集成性)和挑战。【6月更文挑战第11天】
192 6
|
6月前
|
分布式计算 Spark 大数据
深入探究Apache Spark在大数据处理中的实践应用
【6月更文挑战第2天】Apache Spark是流行的开源大数据处理框架,以其内存计算速度和低延迟脱颖而出。本文涵盖Spark概述、核心组件(包括Spark Core、SQL、Streaming和MLlib)及其在数据预处理、批处理分析、交互式查询、实时处理和机器学习中的应用。通过理解Spark内部机制和实践应用,可提升大数据处理效率,发挥其在各行业的潜力。
|
7月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】Spark ML 对数据进行规范化预处理 StandardScaler 与向量拆分
标准化Scaler是数据预处理技术,用于将特征值映射到均值0、方差1的标准正态分布,以消除不同尺度特征的影响,提升模型稳定性和精度。Spark ML中的StandardScaler实现此功能,通过`.setInputCol`、`.setOutputCol`等方法配置并应用到DataFrame数据。示例展示了如何在Spark中使用StandardScaler进行数据规范化,包括创建SparkSession,构建DataFrame,使用VectorAssembler和StandardScaler,以及将向量拆分为列。规范化有助于降低特征重要性,提高模型训练速度和计算效率。
149 6

推荐镜像

更多