EMR Serverless Spark 实践教程 | 通过 Apache Airflow 使用 Livy Operator 提交任务

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。

Apache Airflow 是一个强大的工作流程自动化和调度工具,它允许开发者编排、计划和监控数据管道的执行。EMR Serverless Spark 为处理大规模数据处理任务提供了一个无服务器计算环境。本文为您介绍如何通过 Apache Airflow 的 Livy Operator 实现自动化地向 EMR Serverless Spark 提交任务,以实现任务调度和执行的自动化,帮助您更有效地管理数据处理任务。


背景信息

Apache Livy 通过 REST 接口与 Spark 进行交互,极大简化了 Spark 和应用程序服务器之间的通信复杂度。关于 Livy API,请参见REST API


前提条件


操作步骤

步骤一:创建 Gateway 及访问 Token

  1. 创建 Gateway。
  1. 进入 Compute 页面。
  1. 登录E-MapReduce控制台
  2. 在左侧导航栏,选择EMR Serverless > Spark
  3. Spark页面,单击目标工作空间名称。
  4. EMR Serverless Spark页面,单击左侧导航栏中的Compute
  1. Compute页面,单击Gateway
  2. 单击创建Gateway
  3. 在创建Gateway页面,输入名称(例如,Livy-gateway),单击创建


  1. 创建Token。
  1. Gateway页面,单击Livy-gateway操作列的Token管理
  2. 单击创建Token
  3. 创建Token对话框中,输入名称(例如,Livy-token),单击确定
  4. 复制Token信息。


重要
Token创建完成后,请务必立即复制新Token的信息,后续不支持查看。如果您的Token过期或遗失,请选择新建Token或重置Token。


步骤二:配置 Apache Airflow

  1. 执行以下命令,在Apache Airflow环境中安装Apache Livy。
pip install apache-airflow-providers-apache-livy


  1. 添加Connection。
  • UI 方式

在Airflow中找到默认为livy_default的Connection,并对其信息进行修改;或者您也可以在Airflow Web页面手动添加Connection,详情请参见创建Connection


涉及以下信息:

  • Host:填写为Gateway中的Endpoint信息。
  • Schema:填写为https
  • Extra:填写JSON字符串,x-acs-spark-livy-token为您前一个步骤中复制的Token信息。
{
  "x-acs-spark-livy-token": "6ac**********kfu"
}


  • CLI 方式

通过Airflow CLI执行相应命令来建立Connection,详情请参见创建Connection

airflow connections add 'livy_default' \
    --conn-json '{
        "conn_type": "livy",
        "host": "pre-emr-spark-livy-gateway-cn-hangzhou.data.aliyun.com/api/v1/workspace/w-xxxxxxx/livycompute/lc-xxxxxxx",   # Gateway中的Endpoint信息。
        "schema": "https",
        "extra": {
            "x-acs-spark-livy-token": "6ac**********kfu"  # 为您前一个步骤中复制的Token信息。
        }
    }'



步骤三:DAG 示例

Airflow的DAG(Directed Acyclic Graph)定义允许您声明任务执行的方式,以下是通过Airflow使用Livy Operator执行Spark任务的示例。


从阿里云OSS获取并执行Python脚本文件。

from datetime import timedelta, datetime
from airflow import DAG
from airflow.providers.apache.livy.operators.livy import LivyOperator
default_args = {
    'owner': 'aliyun',
    'depends_on_past': False,
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
}
# Initiate DAG
livy_operator_sparkpi_dag = DAG(
    dag_id="livy_operator_sparkpi_dag",
    default_args=default_args,
    schedule_interval=None,
    start_date=datetime(2024, 5, 20),
    tags=['example', 'spark', 'livy'],
    catchup=False
)
# define livy task with LivyOperator
# 请根据实际情况替换file内容。
livy_sparkpi_submit_task = LivyOperator(
    file="oss://<YourBucket>/jars/spark-examples_2.12-3.3.1.jar",
    class_name="org.apache.spark.examples.SparkPi",
    args=['1000'],
    driver_memory="1g",
    driver_cores=1,
    executor_memory="1g",
    executor_cores=2,
    num_executors=1,
    name="LivyOperator SparkPi",
    task_id="livy_sparkpi_submit_task",
    dag=livy_operator_sparkpi_dag,
)
livy_sparkpi_submit_task


说明

file为您的 Spark 任务对应的文件路径,本文示例为上传至阿里云 OSS 上的 JAR 包spark-examples_2.12-3.3.1.jar的路径,请您根据实际情况替换。上传操作可参见简单上传


步骤四:查看提交至 EMR 的任务

  1. EMR Serverless Spark页面,单击左侧导航栏中的任务历史
  2. 任务历史开发任务页签,您可以查看提交的任务。


相关文档

在Apache Airflow中,您也可以选择使用EMR提供的EmrServerlessSparkStartJobRunOperator接口来提交EMR Serverless Spark任务,提供了一种除了Livy之外的便捷途径。更多详情,请参见通过Apache Airflow向EMR Serverless Spark提交任务


快速跳转

  1. EMR Serverless Spark 版官网:https://www.aliyun.com/product/bigdata/serverlessspark
  2. 产品控制台:https://emr-next.console.aliyun.com/
  3. 产品文档:https://help.aliyun.com/zh/emr/emr-serverless-spark/



EMR Serverless Spark 在 2024年5月正式开启公测,在公测期间可以免费使用最高 100 CU 计算资源,欢迎试用。如果您在使用 EMR Serverless Spark 版的过程中遇到任何疑问,可钉钉扫描以下二维码加入钉钉群(群号:58570004119)咨询。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
6月前
|
存储 消息中间件 Java
Apache Flink 实践问题之原生TM UI日志问题如何解决
Apache Flink 实践问题之原生TM UI日志问题如何解决
58 1
|
3月前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
135 4
|
13天前
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
|
2月前
|
SQL 存储 缓存
EMR Serverless StarRocks 全面升级:重新定义实时湖仓分析
本文介绍了EMR Serverless StarRocks的发展路径及其架构演进。首先回顾了Serverless Spark在EMR中的发展,并指出2021年9月StarRocks开源后,OLAP引擎迅速向其靠拢。随后,EMR引入StarRocks并推出全托管产品,至2023年8月商业化,已有500家客户使用,覆盖20多个行业。 文章重点阐述了EMR Serverless StarRocks 1.0的存算一体架构,包括健康诊断、SQL调优和物化视图等核心功能。接着分析了存算一体架构的挑战,如湖访问不优雅、资源隔离不足及冷热数据分层困难等。
|
6月前
|
消息中间件 分布式计算 Hadoop
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
Apache Flink 实践问题之Flume与Hadoop之间的物理墙问题如何解决
74 3
|
6月前
|
消息中间件 运维 Kafka
Apache Flink 实践问题之达到网卡的最大速度如何解决
Apache Flink 实践问题之达到网卡的最大速度如何解决
66 2
|
3月前
|
存储 数据挖掘 数据处理
巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践
随着数据湖技术的发展,企业纷纷探索其优化潜力。本文分享了巴别时代使用 Apache Paimon 构建 Streaming Lakehouse 的实践。Paimon 支持流式和批处理,提供高性能、统一的数据访问和流批一体的优势。通过示例代码和实践经验,展示了如何高效处理实时数据,解决了数据一致性和故障恢复等挑战。
143 61
|
3月前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
4月前
|
SQL 分布式计算 Serverless
EMR Serverless Spark:一站式全托管湖仓分析利器
本文根据2024云栖大会阿里云 EMR 团队负责人李钰(绝顶) 演讲实录整理而成
234 2
|
4月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
100 1

推荐镜像

更多