华为麒麟的AI性能是高通的3.5倍?这是所有手机运行神经网络的能力

简介: 麒麟 970 真的是当前最强手机 AI 芯片吗?至少苏黎世联邦理工学院的研究人员是这样认为的,在他们开发的 AI Benchmark 应用中,搭载麒麟芯片的华为 P20 Pro 的神经网络处理性能第一,比第二名一加 6 手机(搭载高通骁龙 845)的 3.4 倍还多。这款 APP 目前已经在 Google Play Store 上线,任何人都可以用来测试自己的手机「是否准备好进入 AI 时代了」。


高通、华为、联发科有什么共通点?这三家厂商都做加速手机、平板等移动设备中计算机视觉、NLP 以及其他机器学习任务的硬件架构。然而,这存在一个问题,即开发者难以判断哪家的芯片对特定平台的算法优化较好。于是,来自 ETH Zurich(苏黎世联邦理工学院)的研究员开发了一个名为 AI Benchmark 的 APP,可用于测试手机上机器学习算法的表现。


不过,目前这款 APP 只适用于安卓手机。


AI Benchmark APP


据国外媒体 TechCruch 报道,ETH Zurich 的研究人员开发了一个基准系统来评估用于常见 AI 任务的众多神经网络架构。他们希望通过这种方式帮助 AI 研究员、芯片厂商以及安卓开发者,来测试 AI 模型在不同设备上运行时的表现。


「因为没有相关信息(指算法表现的信息。除了一些内建 APP 的 AI 算法融合到了手机固件,当前所有的 AI 算法都在服务器上远程运行),所以我们想要开发一种工具清晰展示每种设备的表现与能力。」研究员 Andrey Ignatov 在接受 TechCrunch 专访时表示。


微信图片_20211129234356.gif

AI Benchmark APP 运行计算机视觉任务时的测试,图片:Kyle Wiggers/Venture Beat


当前手机 AI 性能排行榜


AI Benchmark APP 能评估智能手机在一系列开源算法中的性能,这些算法执行图像分类、人脸识别、图像超分辨率以及图像增强、分割以及去模糊的任务。AI Benchmark 甚至还可以测试无人驾驶汽车中使用的神经网络的性能,研究人员预测,这种神经网络最终可能会运行在与智能手机芯片类似的芯片上。


在手机上打开该 APP,它会产生算法输出的可视化效果,并给出一个影响芯片系统和 RAM 速度的分数。(一般来说,神经网络越大,处理它所需的内存就越多。)


AI Benchmark 自己测试并列出了一个排行榜,华为 P20 Pro 以 6397 的得分高居榜首,第二名得分为 1875。


1. 华为 P20 Pro – 6397

2. 一加 6 – 1875

3. 索尼 Xperia XZ2 – 1664

4. 三星 Galaxy S9+ – 1494

5. 雷蛇 Razer Phone – 1470

6. 三星 Galaxy S9 – 1446

7. 一加 5T – 1440

8. 一加 5 – 1416

9. 三星 Galaxy Note 8 – 1408

10. 小米 Mi Mix 2 – 1405


微信图片_20211129234407.jpg

在该工具的官网上,目前排名前 15 的手机型号。


机器之心小编也下载了 AI Benchmark,在平均长达 5 分钟、所有 9 项测试结束之后(需耗去 4% 的电量),我们使用的国行版三星 S9 手机拿到了 1594 分,这个分数在高通骁龙 845 芯片的手机里还算不错,也超过了官方排行榜中该型号手机原来的分数,或许是固件更新的功劳?


搭载麒麟 970 芯片的华为 P20 Pro 分数达到了 4573,不及排行榜上的分数(我们的测试机未更新到最新版本系统)。


我们也测试了搭载骁龙 835 的「谷歌官方机」Pixel 2 的跑分:1210。


微信图片_20211129234410.jpg

我们的测试分数,从左至右:华为 P20 Pro、三星 S9、Pixel 2。

那么针对这些旗舰机型的对比结果如何呢?Ignatov 将团队的初步成果总结为「有趣且荒诞」。


Ignatov 称,高通芯片可以加速那些并不兼容所有安卓版本的量化或压缩神经网络。不使用高通骁龙软件开发的典型网络无法利用其 Hexagon DSP AI 加速芯片,尽管 Ignatov 注意到如果实现「恰当驱动」,此类网络可以从中受益。


「如果你正在研发一款使用 AI 能力的 app,那么你在骁龙 SoC 上无法获得任何加速,除非你研发的 app 只为骁龙处理器服务。」Ignatov 称。


另一方面,华为的麒麟芯片性能强大——可以提供近 10 倍的神经网络加速,但是这与量化的神经网络并不兼容。华为称今年麒麟芯片将支持量化神经网络。(Ignatov 注意到华为 P20 和 P20 Pro 是市面上唯一运行 Android 8.1 Oreo 为应用程序提供人工智能加速的手机。)


至于三星的 Exynos 处理器和联发科的 NeuroPilot AI 平台,评测结果就有点参差不齐了。


三星自有的处理器只支持 Android 8.1 及以上版本的 AI 加速,且由于功耗优化和调节(power throttling),其性能变化「很大」,有时甚至高达 50%。


同时,联发科的芯片组——那些同时支持量化神经网络和普通神经网络的型号,性能稍稍弱于三星和华为的硬件。


「总之,骁龙理论上可以提供优秀的结果,但是缺乏强劲的驱动;华为现在的结果比较突出,且不久的未来可能是最好的;三星目前不支持加速(这种情况可能很快就会改变,因为三星目前正在研发自己的 AI 芯片),但是 CPU 很强大;联发科在中端设备上效果较好,但没有什么突破。」Ignatov 称。


AI Benchmark 是如何测试手机AI性能的


据官网介绍,该 benchmark 包含 9 个在手机上运行独立神经网络的计算机视觉任务。这些网络包含大量架构,能让我们评估解决人工智能问题的不同方法的表现和局限性。


任务 1:目标识别/分类

神经网络:MobileNet - V1 | CPU, NPU, DSP

图像分辨率:224 x 224 px

ImageNet 准确率:69.7%。


这是一个非常基础但很强大的神经网络,能够基于一张照片识别 1000 个不同的对象类别,准确率约为 70%。经过量化,其大小可小于 5Mb,再加上低耗内存,它可在几乎所有现有智能手机上使用。


任务 2:目标识别/分类

神经网络:Inception - V3 | CPU, NPU, DSP

图像分辨率:346 x 346 px

ImageNet 准确率:78.0 %


这是对上一个网络的进一步扩展:更加精确,但代价是规模是原来的 4 倍且对计算的要求较高。一个明显的优势是——它可以处理分辨率更高的图像,这意味着更精确的识别和更小目标的检测。


任务 3:人脸识别

神经网络:Inception - Resnet - V1 |CPU

图像分辨率:512x512 px

LFW 得分:0.987


这个任务无需过多介绍:根据人脸照片识别出这个人。实现方式如下:对于每个人脸图像,神经网络会对人脸编码并生成一个 128 维的特征向量,该特征向量不随缩放、移动或旋转而改变。然后,在数据库中检索和此向量最匹配的特征向量(以及对应的身份),数据库里包含数亿个此类信息。


任务 4:图像去模糊

神经网络:SRCNN 9-5-5 | CPU, NPU, DSP

图像分辨率:300 x 300 px

Set-5 得分 (x3):32.75 dB


还记得用手机拍出的模糊照片吗?这个任务就是:让图片变得清晰。在最简单的情况下,这种失真是通过对未损坏的图像应用高斯模糊来建模的,然后尝试使用神经网络来恢复它们。在这个任务中,模糊是通过一种最原始、最简单、最轻量级的神经网络 SRCNN(只有 3 个卷积层)去除的。但是即便如此,它仍然显示出相当令人满意的结果。


任务 5:图像超分辨率

神经网络:VGG - 19 | CPU, NPU, DSP

图像分辨率:192 x 192 px

Set-5 得分 (x3):33.66 dB


你有过缩放照片的经历吗?缩放时是不是会有失真、细节丢失或清晰度下降的问题?这项任务就是让缩放过的照片看起来和原图一样。在本任务中,网络被训练用于完成一项等效的任务:将给定的缩小后图像(如缩小四倍)恢复至原图。此处我们使用一个 19 层的 VGG-19 网络。尽管目前来看,该网络的表现并不惊艳,也不能重建高频部分,但它对于绘画仍是理想的解决方案:该网络可以让图像变得更加清晰、平滑。


任务 6:图像超分辨率

神经网络:SRGAN | 仅 CPU

图像分辨率:512 x 512 px

Set-5 得分(x4):29.40 dB


任务同上,但完成方法略有不同:如果我们使用其他神经网络训练我们的神经网络会如何?我们安排两个网络去完成两个不同的任务:网络 A 尝试解决上面提到的超分辨率问题,网络 B 观察其结果,尝试找到其中的缺陷并惩罚网络 A。听起来是不是很酷?实际上真的很酷:尽管该方法不尽完美,但结果往往非常惊艳。


任务 7:语义图像分割

神经网络:ICNet | 仅 CPU

图像分辨率:384 x 576 px

CityScapes (mIoU):69.5 %


有没有想过在手机上运行自动驾驶算法?这没什么不可能,至少你可以完成一大部分任务——根据车载摄像头拍摄的照片检测 19 类目标(例如,车、行人、路、天空等)。在下图中,你可以看到最近专为低性能设备设计的 ICNet 网络的像素级分割结果(每个颜色对应每个目标类别)。


微信图片_20211129234414.jpg


任务 8:图像增强

神经网络:ResNet - 12 | CPU, NPU, DSP

图像分辨率:128 x 192 px

DPED PSNR i-得分:18.11 dB


看旧手机上的照片是不是觉得很难受?这个问题可以解决:经过恰当训练的神经网络可以让旧手机(即使是 iPhone 3GS)上的照片看起来非常好、非常时髦。要做到这一点,网络要观察、学习如何将来自低端设备的照片优化成像用 DSLR 相机拍出来的一样。当然,这一奇迹有一些明显的缺陷(如:每次换新手机模型都要重新训练网络),但得到的图像看起来非常好,尤其是旧设备上的照片。


任务 9:内存极限

神经网络:SRCNN 9-5-5 | CPU, NPU, DSP

图像分辨率:4 MP

# 参数:69.162


在任务 4 中我们已经认识了 SRCNN,它是最轻便、简单的神经网络之一,但即便如此,在处理高分辨率照片时,它也会让大多数手机「给跪」:要处理高清照片,手机至少要有 6GB 的内存。这项测试的目的是找到你设备的极限:这个最简易的网络到底能处理多大的图像?


最后,你可以去谷歌商店下载此APP测试下自己手机运行神经网络的能力,不服跑个分?


参考链接:https://venturebeat.com/2018/07/25/ai-benchmark-rates-smartphones-neural-network-performance/


微信图片_20211129234535.png


相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
未来的守护神:AI驱动的网络安全之盾,如何用智慧的光芒驱散网络黑暗势力?揭秘高科技防御系统背后的惊天秘密!
【10月更文挑战第3天】随着网络技术的发展,网络安全问题日益严峻,传统防御手段已显不足。本文探讨了构建AI驱动的自适应网络安全防御系统的必要性及其关键环节:数据采集、行为分析、威胁识别、响应决策和执行。通过Python库(如scapy、scikit-learn和TensorFlow)的应用实例,展示了如何利用AI技术提升网络安全防护水平。这种系统能够实时监控、智能分析并自动化响应,显著提高防护效率与准确性,为数字世界提供更强大的安全保障。
60 2
|
4天前
|
机器学习/深度学习 人工智能 安全
AI与网络安全:防御黑客的新武器
在数字化时代,网络安全面临巨大挑战。本文探讨了人工智能(AI)在网络安全中的应用,包括威胁识别、自动化防御、漏洞发现和预测分析,展示了AI如何提升防御效率和准确性,成为对抗网络威胁的强大工具。
|
7天前
|
网络虚拟化 数据安全/隐私保护 数据中心
对比了思科和华为网络设备的基本配置、接口配置、VLAN配置、路由配置、访问控制列表配置及其他重要命令
本文对比了思科和华为网络设备的基本配置、接口配置、VLAN配置、路由配置、访问控制列表配置及其他重要命令,帮助网络工程师更好地理解和使用这两个品牌的产品。通过详细对比,展示了两者的相似之处和差异,强调了持续学习的重要性。
19 2
|
1月前
|
机器学习/深度学习
YOLOv10优改系列一:YOLOv10融合C2f_Ghost网络,让YoloV10实现性能的均衡
本文介绍了YOLOv10的性能优化,通过融合Ghost模块和C2f结构,实现了网络性能的均衡。GhostNet通过GhostModule和GhostBottleNeck减少参数量,适用于资源有限的场景。YOLOv10-C2f_Ghost在减少参数和计算量的同时,保持了与原始网络相当或更好的性能。文章还提供了详细的代码修改步骤和可能遇到的问题解决方案。
121 1
YOLOv10优改系列一:YOLOv10融合C2f_Ghost网络,让YoloV10实现性能的均衡
|
16天前
|
机器学习/深度学习 人工智能 物联网
5G与AI融合:智能网络的新纪元
【10月更文挑战第25天】
37 3
|
22天前
|
缓存 监控 前端开发
优化网络应用的性能
【10月更文挑战第21天】优化网络应用的性能
15 2
|
27天前
|
人工智能 关系型数据库 数据中心
2024 OCP全球峰会:阿里云为代表的中国企业,引领全球AI网络合作和技术创新
今年的OCP(Open Compute Project)峰会于2024年10月14日至17日在美国加州圣何塞举行,在这场全球瞩目的盛会上,以阿里云为代表的中国企业,展示了他们在AI网络架构、液冷技术、SRv6和广域网等前沿领域的强大创新能力,持续引领全球合作与技术创新。
|
2月前
|
移动开发 Android开发 数据安全/隐私保护
移动应用与系统的技术演进:从开发到操作系统的全景解析随着智能手机和平板电脑的普及,移动应用(App)已成为人们日常生活中不可或缺的一部分。无论是社交、娱乐、购物还是办公,移动应用都扮演着重要的角色。而支撑这些应用运行的,正是功能强大且复杂的移动操作系统。本文将深入探讨移动应用的开发过程及其背后的操作系统机制,揭示这一领域的技术演进。
本文旨在提供关于移动应用与系统技术的全面概述,涵盖移动应用的开发生命周期、主要移动操作系统的特点以及它们之间的竞争关系。我们将探讨如何高效地开发移动应用,并分析iOS和Android两大主流操作系统的技术优势与局限。同时,本文还将讨论跨平台解决方案的兴起及其对移动开发领域的影响。通过这篇技术性文章,读者将获得对移动应用开发及操作系统深层理解的钥匙。
|
29天前
|
人工智能 自然语言处理 NoSQL
|
1月前
|
机器学习/深度学习 人工智能 算法
利用AI技术优化网络安全
【10月更文挑战第4天】随着人工智能(AI)的飞速发展,其在网络安全领域的应用也日益广泛。本文将探讨如何利用AI技术提升网络安全防护能力,包括机器学习、深度学习等方法在识别和防御网络攻击方面的应用。同时,文章还将分析AI技术在网络安全领域面临的挑战和未来发展趋势。

热门文章

最新文章