Linux 网络驱动 phy 读写寄存器调试方法

简介: Linux 网络驱动 phy 读写寄存器调试方法

Linux 网络 phy 调试方法

目前嵌入式芯片支持双网卡的有很多。在调试网络驱动时,需要通过mdc 和mdio信号对phy的寄存器进行操作调试。如果每次调试都修改网络驱动的话会很麻烦。下面提供我常用的网络驱动调试方法

在驱动层,设备树绑定mac与mdio总线的关系。

在Linux应用层,编写测试程序mdio 。代码如下:

如果是写寄存器操作,就传入四个参数./mdio ethX phyId addr value.。

ethX 表示是哪个网卡,如eth0 eth1 。

phyId是 phy的物理地址,一般0x00是广播地址.有些phy 的0x00不是广播地址,如marvell 的88e1512 ID 只能时0x00 0x11,0x00不是88e1512的广播地址。

addr 是phy手册的寄存器地址

value 是phy地址要写入的值

如果是读寄存器操作,就传入三个参数./mdio ethX phyId addr

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/mii.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <linux/sockios.h>
#include <linux/types.h>
#include <netinet/in.h>
#include <unistd.h>
 
//#include <QDebug>
 
 
int main(int argc, char *argv[])
{
    int sockfd;
    struct mii_ioctl_data *mii = NULL;
    struct ifreq ifr;
    memset(&ifr, 0, sizeof(ifr));
    strncpy(ifr.ifr_name, "eth0", IFNAMSIZ - 1);
    sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
    ioctl(sockfd, SIOCGMIIPHY, &ifr);
    mii = (struct mii_ioctl_data*)&ifr.ifr_data;
 
    if(argc == 4)
    {
        strncpy(ifr.ifr_name, argv[1], IFNAMSIZ - 1);
        sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
        ioctl(sockfd, SIOCGMIIPHY, &ifr);
        mii = (struct mii_ioctl_data*)&ifr.ifr_data;
 
        mii->phy_id    = (uint16_t)strtoul(argv[2], NULL, 0);
        mii->reg_num    = (uint16_t)strtoul(argv[3], NULL, 0);
 
        ioctl(sockfd, SIOCGMIIREG, &ifr);
 
        printf("read --- value : 0x%x", mii->val_out);
    }
    else if(argc == 5)
    {
        strncpy(ifr.ifr_name, argv[1], IFNAMSIZ - 1);
        sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
        ioctl(sockfd, SIOCGMIIPHY, &ifr);
        mii = (struct mii_ioctl_data*)&ifr.ifr_data;
        mii->phy_id    = (uint16_t)strtoul(argv[2], NULL, 0);
        mii->reg_num    = (uint16_t)strtoul(argv[3], NULL, 0);
        mii->val_in     = (uint16_t)strtoul(argv[4], NULL, 0);
 
        ioctl(sockfd, SIOCSMIIREG, &ifr);
    }else{
       printf("mdio ethX phyId addr value\n");
    }
 
    close(sockfd);
 
 
 
    return 0;
}

————————————————
版权声明:本文为CSDN博主「Eric_Xi_BJ」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yafeixi/article/details/112958722

目录
相关文章
|
2月前
|
监控 安全 网络安全
深入解析PDCERF:网络安全应急响应的六阶段方法
PDCERF是网络安全应急响应的六阶段方法,涵盖准备、检测、抑制、根除、恢复和跟进。本文详细解析各阶段目标与操作步骤,并附图例,助读者理解与应用,提升组织应对安全事件的能力。
445 89
|
2天前
|
JSON 运维 Ubuntu
Linux下如何使用Curl进行网络请求
希望这篇文章能帮助您在Linux下更好地使用Curl进行网络请求。如有疑问,请随时提问!
25 10
|
2天前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
11天前
|
Kubernetes Shell Windows
【Azure K8S | AKS】在AKS的节点中抓取目标POD的网络包方法分享
在AKS中遇到复杂网络问题时,可通过以下步骤进入特定POD抓取网络包进行分析:1. 使用`kubectl get pods`确认Pod所在Node;2. 通过`kubectl node-shell`登录Node;3. 使用`crictl ps`找到Pod的Container ID;4. 获取PID并使用`nsenter`进入Pod的网络空间;5. 在`/var/tmp`目录下使用`tcpdump`抓包。完成后按Ctrl+C停止抓包。
41 12
|
2月前
|
Linux 网络性能优化 网络安全
Linux(openwrt)下iptables+tc工具实现网络流量限速控制(QoS)
通过以上步骤,您可以在Linux(OpenWrt)系统中使用iptables和tc工具实现网络流量限速控制(QoS)。这种方法灵活且功能强大,可以帮助管理员有效管理网络带宽,确保关键业务的网络性能。希望本文能够为您提供有价值的参考。
189 28
|
2月前
|
机器学习/深度学习 数据采集 人工智能
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
GeneralDyG 是南洋理工大学推出的通用动态图异常检测方法,通过时间 ego-graph 采样、图神经网络和时间感知 Transformer 模块,有效应对数据多样性、动态特征捕捉和计算成本高等挑战。
84 18
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
|
2月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
69 11
|
1月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索:自动化设计神经网络的方法
在人工智能(AI)和深度学习(Deep Learning)快速发展的背景下,神经网络架构的设计已成为一个日益复杂而关键的任务。传统上,研究人员和工程师需要通过经验和反复试验来手动设计神经网络,耗费大量时间和计算资源。随着模型规模的不断扩大,这种方法显得愈加低效和不够灵活。为了解决这一挑战,神经架构搜索(Neural Architecture Search,NAS)应运而生,成为自动化设计神经网络的重要工具。
|
2月前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
146 15