Linux 网络驱动 phy 读写寄存器调试方法

简介: Linux 网络驱动 phy 读写寄存器调试方法

Linux 网络 phy 调试方法

目前嵌入式芯片支持双网卡的有很多。在调试网络驱动时,需要通过mdc 和mdio信号对phy的寄存器进行操作调试。如果每次调试都修改网络驱动的话会很麻烦。下面提供我常用的网络驱动调试方法

在驱动层,设备树绑定mac与mdio总线的关系。

在Linux应用层,编写测试程序mdio 。代码如下:

如果是写寄存器操作,就传入四个参数./mdio ethX phyId addr value.。

ethX 表示是哪个网卡,如eth0 eth1 。

phyId是 phy的物理地址,一般0x00是广播地址.有些phy 的0x00不是广播地址,如marvell 的88e1512 ID 只能时0x00 0x11,0x00不是88e1512的广播地址。

addr 是phy手册的寄存器地址

value 是phy地址要写入的值

如果是读寄存器操作,就传入三个参数./mdio ethX phyId addr

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <linux/mii.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <linux/sockios.h>
#include <linux/types.h>
#include <netinet/in.h>
#include <unistd.h>
 
//#include <QDebug>
 
 
int main(int argc, char *argv[])
{
    int sockfd;
    struct mii_ioctl_data *mii = NULL;
    struct ifreq ifr;
    memset(&ifr, 0, sizeof(ifr));
    strncpy(ifr.ifr_name, "eth0", IFNAMSIZ - 1);
    sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
    ioctl(sockfd, SIOCGMIIPHY, &ifr);
    mii = (struct mii_ioctl_data*)&ifr.ifr_data;
 
    if(argc == 4)
    {
        strncpy(ifr.ifr_name, argv[1], IFNAMSIZ - 1);
        sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
        ioctl(sockfd, SIOCGMIIPHY, &ifr);
        mii = (struct mii_ioctl_data*)&ifr.ifr_data;
 
        mii->phy_id    = (uint16_t)strtoul(argv[2], NULL, 0);
        mii->reg_num    = (uint16_t)strtoul(argv[3], NULL, 0);
 
        ioctl(sockfd, SIOCGMIIREG, &ifr);
 
        printf("read --- value : 0x%x", mii->val_out);
    }
    else if(argc == 5)
    {
        strncpy(ifr.ifr_name, argv[1], IFNAMSIZ - 1);
        sockfd = socket(PF_LOCAL, SOCK_DGRAM, 0);
        ioctl(sockfd, SIOCGMIIPHY, &ifr);
        mii = (struct mii_ioctl_data*)&ifr.ifr_data;
        mii->phy_id    = (uint16_t)strtoul(argv[2], NULL, 0);
        mii->reg_num    = (uint16_t)strtoul(argv[3], NULL, 0);
        mii->val_in     = (uint16_t)strtoul(argv[4], NULL, 0);
 
        ioctl(sockfd, SIOCSMIIREG, &ifr);
    }else{
       printf("mdio ethX phyId addr value\n");
    }
 
    close(sockfd);
 
 
 
    return 0;
}

————————————————
版权声明:本文为CSDN博主「Eric_Xi_BJ」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yafeixi/article/details/112958722

目录
相关文章
|
2月前
|
安全 网络协议 Linux
Linux网络应用层协议展示:HTTP与HTTPS
此外,必须注意,从HTTP迁移到HTTPS是一项重要且必要的任务,因为这不仅关乎用户信息的安全,也有利于你的网站评级和粉丝的信心。在网络世界中,信息的安全就是一切,选择HTTPS,让您的网站更加安全,使您的用户满意,也使您感到满意。
83 18
|
2月前
|
Linux 数据安全/隐私保护
使用Linux命令行接入无线网络Wi-Fi的示例。
现在,你已经使用命令行成功地连接到 Wi-Fi 网络了。这两个示例涵盖了用 `nmcli` 和 `wpa_supplicant` 连接无线网络的常见场景,让你能够不依赖图形化界面来完成这个任务。在日常使用中熟练掌握这些基本操作能增强你对 Linux 系统的理解,帮助你更有效地处理各种问题。
88 12
|
2月前
计算网络号的直接方法
子网掩码用于区分IP地址中的网络部分和主机部分,连续的“1”表示网络位,“0”表示主机位。例如,255.255.255.0 的二进制为 11111111.11111111.11111111.00000000,前24位是网络部分。通过子网掩码可提取网络号,如 IP 192.168.1.10 与子网掩码 255.255.255.0 的网络号为 192.168.1.0。此外,文档还介绍了十进制与二进制间的转换方法,帮助理解IP地址的组成与计算。
100 11
|
2月前
|
安全 Ubuntu Linux
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
96 0
Nipper 3.8.0 for Windows & Linux - 网络设备漏洞评估
|
4月前
|
Ubuntu Linux
Linux系统管理:服务器时间与网络时间同步技巧。
以上就是在Linux服务器上设置时间同步的方式。然而,要正确运用这些知识,需要理解其背后的工作原理:服务器根据网络中的其他机器的时间进行校对,逐步地精确自己的系统时间,就像一只犹豫不决的啮齿动物,通过观察其他啮齿动物的行为,逐渐确定自己的行为逻辑,既简单,又有趣。最后希望这个过程既能给你带来乐趣,也能提高你作为系统管理员的专业素养。
622 20
|
4月前
|
网络协议 物联网
VB6网络通信软件上位机开发,TCP网络通信,读写数据并处理,完整源码下载
本文介绍使用VB6开发网络通信上位机客户端程序,涵盖Winsock控件的引入与使用,包括连接服务端、发送数据(如通过`Winsock1.SendData`方法)及接收数据(利用`Winsock1_DataArrival`事件)。代码实现TCP网络通信,可读写并处理16进制数据,适用于自动化和工业控制领域。提供完整源码下载,适合学习VB6网络程序开发。 下载链接:[完整源码](http://xzios.cn:86/WJGL/DownLoadDetial?Id=20)
143 12
|
4月前
|
缓存 数据中心 网络架构
5个减少网络延迟的简单方法
高速互联网对工作与娱乐至关重要,延迟和断线会严重影响效率和体验。本文探讨了导致连接缓慢的三个关键因素:吞吐量、带宽和延迟,并提供了减少延迟的实用方法。包括重启设备、关闭占用带宽的程序、使用有线连接、优化数据中心位置以及添加内容分发网络 (CDN) 等策略。虽然完全消除延迟不可能,但通过这些方法可显著改善网络性能。
871 7
|
4月前
|
JSON 运维 Ubuntu
Linux下如何使用Curl进行网络请求
希望这篇文章能帮助您在Linux下更好地使用Curl进行网络请求。如有疑问,请随时提问!
199 10
|
4月前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
4月前
|
Kubernetes Shell Windows
【Azure K8S | AKS】在AKS的节点中抓取目标POD的网络包方法分享
在AKS中遇到复杂网络问题时,可通过以下步骤进入特定POD抓取网络包进行分析:1. 使用`kubectl get pods`确认Pod所在Node;2. 通过`kubectl node-shell`登录Node;3. 使用`crictl ps`找到Pod的Container ID;4. 获取PID并使用`nsenter`进入Pod的网络空间;5. 在`/var/tmp`目录下使用`tcpdump`抓包。完成后按Ctrl+C停止抓包。
146 13