ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测daiding

简介: ML之kNNC:基于iris莺尾花数据集(PCA处理+三维散点图可视化)利用kNN算法实现分类预测daiding

设计思路

image.png




输出结果

image.pngimage.png















(149, 5)

   5.1  3.5  1.4  0.2  Iris-setosa

0  4.9  3.0  1.4  0.2  Iris-setosa

1  4.7  3.2  1.3  0.2  Iris-setosa

2  4.6  3.1  1.5  0.2  Iris-setosa

3  5.0  3.6  1.4  0.2  Iris-setosa

4  5.4  3.9  1.7  0.4  Iris-setosa

(149, 5)

   Sepal_Length  Sepal_Width  Petal_Length  Petal_Width            type

0           4.5          2.3           1.3          0.3     Iris-setosa

1           6.3          2.5           5.0          1.9  Iris-virginica

2           5.1          3.4           1.5          0.2     Iris-setosa

3           6.3          3.3           6.0          2.5  Iris-virginica

4           6.8          3.2           5.9          2.3  Iris-virginica

切分点: 29

label_classes: ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

kNNDIY模型预测,基于原数据: 0.95

kNN模型预测,基于原数据预测: [0.96666667 1.         0.93333333 1.         0.93103448]

kNN模型预测,原数据PCA处理后: [1.         0.96       0.95918367]




核心代码


class KNeighborsClassifier Found at: sklearn.neighbors._classification

class KNeighborsClassifier(NeighborsBase, KNeighborsMixin,

   SupervisedIntegerMixin, ClassifierMixin):

   """Classifier implementing the k-nearest neighbors vote.

 

   Read more in the :ref:`User Guide <classification>`.

 

   Parameters

   ----------

   n_neighbors : int, default=5

   Number of neighbors to use by default for :meth:`kneighbors` queries.

 

   weights : {'uniform', 'distance'} or callable, default='uniform'

   weight function used in prediction.  Possible values:

 

   - 'uniform' : uniform weights.  All points in each neighborhood

   are weighted equally.

   - 'distance' : weight points by the inverse of their distance.

   in this case, closer neighbors of a query point will have a

   greater influence than neighbors which are further away.

   - [callable] : a user-defined function which accepts an

   array of distances, and returns an array of the same shape

   containing the weights.

 

   algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'

   Algorithm used to compute the nearest neighbors:

 

   - 'ball_tree' will use :class:`BallTree`

   - 'kd_tree' will use :class:`KDTree`

   - 'brute' will use a brute-force search.

   - 'auto' will attempt to decide the most appropriate algorithm

   based on the values passed to :meth:`fit` method.

 

   Note: fitting on sparse input will override the setting of

   this parameter, using brute force.

 

   leaf_size : int, default=30

   Leaf size passed to BallTree or KDTree.  This can affect the

   speed of the construction and query, as well as the memory

   required to store the tree.  The optimal value depends on the

   nature of the problem.

 

   p : int, default=2

   Power parameter for the Minkowski metric. When p = 1, this is

   equivalent to using manhattan_distance (l1), and euclidean_distance

   (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

 

   metric : str or callable, default='minkowski'

   the distance metric to use for the tree.  The default metric is

   minkowski, and with p=2 is equivalent to the standard Euclidean

   metric. See the documentation of :class:`DistanceMetric` for a

   list of available metrics.

   If metric is "precomputed", X is assumed to be a distance matrix and

   must be square during fit. X may be a :term:`sparse graph`,

   in which case only "nonzero" elements may be considered neighbors.

 

   metric_params : dict, default=None

   Additional keyword arguments for the metric function.

 

   n_jobs : int, default=None

   The number of parallel jobs to run for neighbors search.

   ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.

   ``-1`` means using all processors. See :term:`Glossary <n_jobs>`

   for more details.

   Doesn't affect :meth:`fit` method.

 

   Attributes

   ----------

   classes_ : array of shape (n_classes,)

   Class labels known to the classifier

 

   effective_metric_ : str or callble

   The distance metric used. It will be same as the `metric` parameter

   or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to

   'minkowski' and `p` parameter set to 2.

 

   effective_metric_params_ : dict

   Additional keyword arguments for the metric function. For most

    metrics

   will be same with `metric_params` parameter, but may also contain the

   `p` parameter value if the `effective_metric_` attribute is set to

   'minkowski'.

 

   outputs_2d_ : bool

   False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit

   otherwise True.

 

   Examples

   --------

   >>> X = [[0], [1], [2], [3]]

   >>> y = [0, 0, 1, 1]

   >>> from sklearn.neighbors import KNeighborsClassifier

   >>> neigh = KNeighborsClassifier(n_neighbors=3)

   >>> neigh.fit(X, y)

   KNeighborsClassifier(...)

   >>> print(neigh.predict([[1.1]]))

   [0]

   >>> print(neigh.predict_proba([[0.9]]))

   [[0.66666667 0.33333333]]

 

   See also

   --------

   RadiusNeighborsClassifier

   KNeighborsRegressor

   RadiusNeighborsRegressor

   NearestNeighbors

 

   Notes

   -----

   See :ref:`Nearest Neighbors <neighbors>` in the online

    documentation

   for a discussion of the choice of ``algorithm`` and ``leaf_size``.

 

   .. warning::

 

   Regarding the Nearest Neighbors algorithms, if it is found that two

   neighbors, neighbor `k+1` and `k`, have identical distances

   but different labels, the results will depend on the ordering of the

   training data.

 

  https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

   """

   @_deprecate_positional_args

   def __init__(self, n_neighbors=5,

       *, weights='uniform', algorithm='auto', leaf_size=30,

       p=2, metric='minkowski', metric_params=None, n_jobs=None, **

       kwargs):

       super().__init__(n_neighbors=n_neighbors, algorithm=algorithm,

        leaf_size=leaf_size, metric=metric, p=p, metric_params=metric_params,

        n_jobs=n_jobs, **kwargs)

       self.weights = _check_weights(weights)

 

   def predict(self, X):

       """Predict the class labels for the provided data.

       Parameters

       ----------

       X : array-like of shape (n_queries, n_features), \

               or (n_queries, n_indexed) if metric == 'precomputed'

           Test samples.

       Returns

       -------

       y : ndarray of shape (n_queries,) or (n_queries, n_outputs)

           Class labels for each data sample.

       """

       X = check_array(X, accept_sparse='csr')

       neigh_dist, neigh_ind = self.kneighbors(X)

       classes_ = self.classes_

       _y = self._y

       if not self.outputs_2d_:

           _y = self._y.reshape((-1, 1))

           classes_ = [self.classes_]

       n_outputs = len(classes_)

       n_queries = _num_samples(X)

       weights = _get_weights(neigh_dist, self.weights)

       y_pred = np.empty((n_queries, n_outputs), dtype=classes_[0].

        dtype)

       for k, classes_k in enumerate(classes_):

           if weights is None:

               mode, _ = stats.mode(_y[neigh_indk], axis=1)

           else:

               mode, _ = weighted_mode(_y[neigh_indk], weights, axis=1)

           mode = np.asarray(mode.ravel(), dtype=np.intp)

           y_pred[:k] = classes_k.take(mode)

     

       if not self.outputs_2d_:

           y_pred = y_pred.ravel()

       return y_pred

 

   def predict_proba(self, X):

       """Return probability estimates for the test data X.

       Parameters

       ----------

       X : array-like of shape (n_queries, n_features), \

               or (n_queries, n_indexed) if metric == 'precomputed'

           Test samples.

       Returns

       -------

       p : ndarray of shape (n_queries, n_classes), or a list of n_outputs

           of such arrays if n_outputs > 1.

           The class probabilities of the input samples. Classes are ordered

           by lexicographic order.

       """

       X = check_array(X, accept_sparse='csr')

       neigh_dist, neigh_ind = self.kneighbors(X)

       classes_ = self.classes_

       _y = self._y

       if not self.outputs_2d_:

           _y = self._y.reshape((-1, 1))

           classes_ = [self.classes_]

       n_queries = _num_samples(X)

       weights = _get_weights(neigh_dist, self.weights)

       if weights is None:

           weights = np.ones_like(neigh_ind)

       all_rows = np.arange(X.shape[0])

       probabilities = []

       for k, classes_k in enumerate(classes_):

           pred_labels = _y[:k][neigh_ind]

           proba_k = np.zeros((n_queries, classes_k.size))

           # a simple ':' index doesn't work right

           for i, idx in enumerate(pred_labels.T): # loop is O(n_neighbors)

               proba_k[all_rowsidx] += weights[:i]

         

           # normalize 'votes' into real [0,1] probabilities

           normalizer = proba_k.sum(axis=1)[:np.newaxis]

           normalizer[normalizer == 0.0] = 1.0

           proba_k /= normalizer

           probabilities.append(proba_k)

     

       if not self.outputs_2d_:

           probabilities = probabilities[0]

       return probabilities







相关文章
|
1月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
34 0
|
14天前
|
机器学习/深度学习 自然语言处理 算法
|
2天前
|
算法 数据可视化 大数据
圆堆图circle packing算法可视化分析电商平台网红零食销量采集数据
圆堆图circle packing算法可视化分析电商平台网红零食销量采集数据
31 13
|
8天前
|
机器学习/深度学习 算法 数据可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
13 0
|
8天前
|
数据可视化 算法 数据挖掘
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
PYTHON实现谱聚类算法和改变聚类簇数结果可视化比较
|
9天前
电信公司churn数据客户流失k近邻(knn)模型预测分析
电信公司churn数据客户流失k近邻(knn)模型预测分析
18 0
|
29天前
|
存储 算法 搜索推荐
【算法】七大经典排序(插入,选择,冒泡,希尔,堆,快速,归并)(含可视化算法动图,清晰易懂,零基础入门)
【算法】七大经典排序(插入,选择,冒泡,希尔,堆,快速,归并)(含可视化算法动图,清晰易懂,零基础入门)
|
1月前
|
XML 机器学习/深度学习 算法
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
33 1
|
1月前
|
算法
基于Harris角点的室内三维全景图拼接算法matlab仿真
本文介绍了使用Harris角点检测算法构建室内三维全景图的过程。在matlab2022a环境下,通过检测、匹配特征点并进行图像拼接,实现全景图的创建。算法涉及图像梯度计算、协方差矩阵、响应函数及非极大值抑制。示例代码展示了读取图像、调整大小并应用角点检测函数进行图像混合的步骤。最后,通过图像子区显示验证了拼接效果。
|
1月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到&quot;hand.txt&quot;文件。