在Docker Compose上使用GPU运行TensorFlow

简介: 容器化和AI是目前开发的大趋势。理想情况下,容器化可以将环境无缝迁移,将配置环境的成本无限降低:但是在容器中配置CUDA并运行TensorFlow一向是个难题。对于初学者以及没有深度学习工作站的用户,AWS和Azure推出了带独立显卡的云服务:但是按需实例价格不便宜,竞价式实例价格公道然而虚拟机不能重启,导致不能按需挂载硬盘并保存工作状态,用户需要编写大量代码时刻对虚拟机进行监控并对结果进行异地保存。Deep Systems对这个问题进行了研究并给出了很好的建议。 用户首先需要配置 CUDA:Deep Systems推荐使用runtime 安装,以免在升级后污染依赖环境。 安装 Dock
+关注继续查看

容器化和AI是目前开发的大趋势。理想情况下,容器化可以将环境无缝迁移,将配置环境的成本无限降低:但是在容器中配置CUDA并运行TensorFlow一向是个难题。对于初学者以及没有深度学习工作站的用户,AWS和Azure推出了带独立显卡的云服务:但是按需实例价格不便宜,竞价式实例价格公道然而虚拟机不能重启,导致不能按需挂载硬盘并保存工作状态,用户需要编写大量代码时刻对虚拟机进行监控并对结果进行异地保存。Deep Systems对这个问题进行了研究并给出了很好的建议。

用户首先需要配置 CUDA:Deep Systems推荐使用runtime 安装,以免在升级后污染依赖环境。

安装 Docker:一行命令就可以解决这个问题。curl -sSL get.docker。com/ | sh

安装 Nvidia Docker:Nvidia对Docker有良好的支持,可以方便地配置GPU穿透,而且不必再担心驱动版本不匹配的问题。

wget -P /tmp github。com/NVIDIA/nvidia-docker/releases/download/v1.0.1/nvidia-docker_1.0.1-1_amd64.deb
sudo dpkg -i /tmp/nvidia-docker*.deb
安装后的调用方法是:nvidia-docker run --rm nvidia/cuda nvidia-smi

安装 Docker Compose:Docker Compose可以提供很多方便的功能,即使只有一个容器也推荐使用。

curl -L github。com/docker/compose/releases/download/1.15.0/docker-compose-uname -s-uname -m > /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
安装 Nvidia Docker Compose:这个小脚本可以将Nvidia Docker和Docker Compose连接起来。

使用pip install nvidia-docker-compose 安装后,即可使用nvidia-docker-compose 命令直接调用。

加入别名:nvidia-docker-compose 比较难敲,所以配置下列别名:

alias doc='nvidia-docker-compose'
alias docl='doc logs -f --tail=100'

最后,在docker-compose.yml 写入下列内容:

version: '3'
services:
tf:
image: gcr.io/tensorflow/tensorflow:latest-gpu
ports:

  • 8888:8888

volumes:

  • .:/notebooks

大功告成!doc up 会启动容器,自带TensorFlow Jupiter。

Deep Systems已经将这套系统投入生产。

对于AWS的竞价实例,由于竞价实例不能重启,而且不能保存状态,情况略微复杂一些:有几种聪明的解决方式。

建立一个数据卷,启动时手工挂载。优点是稳定;缺点是每次启动游戏购买平台时都必须人工操作,而且数据卷外的所有操作都会丢失。

使用Docker,在启动后挂载一个数据卷,或者按本文方法在启动后建立Docker,直接在里面进行操作。优点是易于理解、工具成熟,缺点是有点麻烦,而且除非按本文方法,否则没有真正解决数据集外操作全部丢失的问题。

使用ec2-spotter,准备一个配置好的数据卷,在启动时直接将系统卷替换:缺点是对于每个区域都需要人工修改所需镜像。

相关实践学习
通过GPU云服务器生成AI视频
本教程介绍如何使用GPU云服务器搭建Stable Diffusion模型,并基于ModelScope框架,实现使用文本生成视频。
目录
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 搜索推荐
基于Windows环境下CPU和GPU版本Tensorflow详细安装过程
基于Windows环境下CPU和GPU版本Tensorflow详细安装过程
176 0
基于Windows环境下CPU和GPU版本Tensorflow详细安装过程
|
8月前
|
并行计算 PyTorch TensorFlow
Conda安装TensorFlow和PyTorch的GPU支持包
本文介绍基于Conda(Anaconda/Miniconda)的TensorFlow和PyTorch的GPU支持包安装方法(conda/pip)
564 0
Conda安装TensorFlow和PyTorch的GPU支持包
|
8月前
|
机器学习/深度学习 并行计算 PyTorch
安装GPU版本tensorflow、pytorch
安装GPU版本tensorflow、pytorch
安装GPU版本tensorflow、pytorch
|
10月前
|
并行计算 Linux TensorFlow
TensorFlow各个GPU版本CUDA和cuDNN对应版本
TensorFlow各个GPU版本CUDA和cuDNN对应版本
TensorFlow各个GPU版本CUDA和cuDNN对应版本
|
10月前
|
并行计算 TensorFlow 算法框架/工具
Tensorflow 2.0 GPU 版本的安装 | 学习笔记
快速学习 Tensorflow 2.0 GPU 版本的安装
186 0
Tensorflow 2.0 GPU 版本的安装 | 学习笔记
|
11月前
|
机器学习/深度学习 并行计算 TensorFlow
使用anaconda配置gpu版本的tensorflow(30系列以下显卡)
使用anaconda配置gpu版本的tensorflow(30系列以下显卡)
使用anaconda配置gpu版本的tensorflow(30系列以下显卡)
|
并行计算 编译器 TensorFlow
tensorflow gpu和cuda版本的对应关系
tensorflow gpu和cuda版本的对应关系
414 0
|
TensorFlow 算法框架/工具 异构计算
成功解决:Win系统下的Tensorflow使用CPU而不使用GPU运行加速
成功解决:Win系统下的Tensorflow使用CPU而不使用GPU运行加速
成功解决:Win系统下的Tensorflow使用CPU而不使用GPU运行加速
|
机器学习/深度学习 并行计算 Ubuntu
TF之Windows:Windows系统下设置Tensorflow运行方式为GPU加速运行的详细攻略
TF之Windows:Windows系统下设置Tensorflow运行方式为GPU加速运行的详细攻略
TF之Windows:Windows系统下设置Tensorflow运行方式为GPU加速运行的详细攻略
|
存储 弹性计算 Kubernetes
尝鲜阿里云容器服务Kubernetes 1.16,共享TensorFlow实验室《二》--共享GPU的弹性
上一篇文章《尝鲜阿里云容器服务Kubernetes 1.16,共享TensorFlow实验室》我们讲述了如何通过CGPU的方案来实现CGPU资源的共享和隔离。 本文介绍基于CGPU资源的弹性能力。 ps:下面的说明是基于上一篇文章的环境来进行的描述,环境的搭建请参考上一篇文章。 ## 配置弹性伸缩组 1. 在“集群列表”中目标集群的“更多”的下拉菜单中选中“自动伸缩” ![001.j
535 0
尝鲜阿里云容器服务Kubernetes 1.16,共享TensorFlow实验室《二》--共享GPU的弹性
相关产品
机器翻译
推荐文章
更多