ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

简介: ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

输出结果

Fitting 3 folds for each of 12 candidates, totalling 36 fits

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   6.2s

[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    6.2s remaining:    0.0s

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   7.1s

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   7.0s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.9s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.8s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.3s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   6.3s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   7.0s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   8.1s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -   8.8s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  10.7s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -   9.4s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   8.4s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   6.7s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   6.9s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.6s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.2s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.8s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   7.6s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   7.7s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   8.2s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   6.7s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   8.4s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   9.5s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  10.1s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -   9.9s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -   8.8s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   9.2s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   7.7s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   6.9s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   8.0s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   9.5s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   9.0s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   8.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   8.1s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   9.0s

[Parallel(n_jobs=1)]: Done  36 out of  36 | elapsed:  4.8min finished

单线程:输出最佳模型在测试集上的准确性: 0.8226666666666667


设计思

image.png

 

核心代

class GridSearchCV(BaseSearchCV):

   """Exhaustive search over specified parameter values for an estimator.

 

   .. deprecated:: 0.18

   This module will be removed in 0.20.

   Use :class:`sklearn.model_selection.GridSearchCV` instead.

 

   Important members are fit, predict.

 

   GridSearchCV implements a "fit" and a "score" method.

   It also implements "predict", "predict_proba", "decision_function",

   "transform" and "inverse_transform" if they are implemented in the

   estimator used.

 

   The parameters of the estimator used to apply these methods are

    optimized

   by cross-validated grid-search over a parameter grid.

 

   Read more in the :ref:`User Guide <grid_search>`.

 

   Parameters

   ----------

   estimator : estimator object.

   A object of that type is instantiated for each grid point.

   This is assumed to implement the scikit-learn estimator interface.

   Either estimator needs to provide a ``score`` function,

   or ``scoring`` must be passed.

 

   param_grid : dict or list of dictionaries

   Dictionary with parameters names (string) as keys and lists of

   parameter settings to try as values, or a list of such

   dictionaries, in which case the grids spanned by each dictionary

   in the list are explored. This enables searching over any sequence

   of parameter settings.

 

   scoring : string, callable or None, default=None

   A string (see model evaluation documentation) or

   a scorer callable object / function with signature

   ``scorer(estimator, X, y)``.

   If ``None``, the ``score`` method of the estimator is used.

 

   fit_params : dict, optional

   Parameters to pass to the fit method.

 

   n_jobs: int, default: 1 :

   The maximum number of estimators fit in parallel.

 

   - If -1 all CPUs are used.

 

   - If 1 is given, no parallel computing code is used at all,

   which is useful for debugging.

 

   - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.

   For example, with ``n_jobs = -2`` all CPUs but one are used.

 

   .. versionchanged:: 0.17

   Upgraded to joblib 0.9.3.

 

   pre_dispatch : int, or string, optional

   Controls the number of jobs that get dispatched during parallel

   execution. Reducing this number can be useful to avoid an

   explosion of memory consumption when more jobs get dispatched

   than CPUs can process. This parameter can be:

 

   - None, in which case all the jobs are immediately

   created and spawned. Use this for lightweight and

   fast-running jobs, to avoid delays due to on-demand

   spawning of the jobs

 

   - An int, giving the exact number of total jobs that are

   spawned

 

   - A string, giving an expression as a function of n_jobs,

   as in '2*n_jobs'

 

   iid : boolean, default=True

   If True, the data is assumed to be identically distributed across

   the folds, and the loss minimized is the total loss per sample,

   and not the mean loss across the folds.

 

   cv : int, cross-validation generator or an iterable, optional

   Determines the cross-validation splitting strategy.

   Possible inputs for cv are:

 

   - None, to use the default 3-fold cross-validation,

   - integer, to specify the number of folds.

   - An object to be used as a cross-validation generator.

   - An iterable yielding train/test splits.

 

   For integer/None inputs, if the estimator is a classifier and ``y`` is

   either binary or multiclass,

   :class:`sklearn.model_selection.StratifiedKFold` is used. In all

   other cases, :class:`sklearn.model_selection.KFold` is used.

 

   Refer :ref:`User Guide <cross_validation>` for the various

   cross-validation strategies that can be used here.

 

   refit : boolean, default=True

   Refit the best estimator with the entire dataset.

   If "False", it is impossible to make predictions using

   this GridSearchCV instance after fitting.

 

   verbose : integer

   Controls the verbosity: the higher, the more messages.

 

   error_score : 'raise' (default) or numeric

   Value to assign to the score if an error occurs in estimator fitting.

   If set to 'raise', the error is raised. If a numeric value is given,

   FitFailedWarning is raised. This parameter does not affect the refit

   step, which will always raise the error.

 

 

   Examples

   --------

   >>> from sklearn import svm, grid_search, datasets

   >>> iris = datasets.load_iris()

   >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}

   >>> svr = svm.SVC()

   >>> clf = grid_search.GridSearchCV(svr, parameters)

   >>> clf.fit(iris.data, iris.target)

   ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS

   GridSearchCV(cv=None, error_score=...,

   estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,

   decision_function_shape='ovr', degree=..., gamma=...,

   kernel='rbf', max_iter=-1, probability=False,

   random_state=None, shrinking=True, tol=...,

   verbose=False),

   fit_params={}, iid=..., n_jobs=1,

   param_grid=..., pre_dispatch=..., refit=...,

   scoring=..., verbose=...)

 

 

   Attributes

   ----------

   grid_scores_ : list of named tuples

   Contains scores for all parameter combinations in param_grid.

   Each entry corresponds to one parameter setting.

   Each named tuple has the attributes:

 

   * ``parameters``, a dict of parameter settings

   * ``mean_validation_score``, the mean score over the

   cross-validation folds

   * ``cv_validation_scores``, the list of scores for each fold

 

   best_estimator_ : estimator

   Estimator that was chosen by the search, i.e. estimator

   which gave highest score (or smallest loss if specified)

   on the left out data. Not available if refit=False.

 

   best_score_ : float

   Score of best_estimator on the left out data.

 

   best_params_ : dict

   Parameter setting that gave the best results on the hold out data.

 

   scorer_ : function

   Scorer function used on the held out data to choose the best

   parameters for the model.

 

   Notes

   ------

   The parameters selected are those that maximize the score of the left

    out

   data, unless an explicit score is passed in which case it is used instead.

 

   If `n_jobs` was set to a value higher than one, the data is copied for

    each

   point in the grid (and not `n_jobs` times). This is done for efficiency

   reasons if individual jobs take very little time, but may raise errors if

   the dataset is large and not enough memory is available.  A

    workaround in

   this case is to set `pre_dispatch`. Then, the memory is copied only

   `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *

   n_jobs`.

 

   See Also

   ---------

   :class:`ParameterGrid`:

   generates all the combinations of a hyperparameter grid.

 

   :func:`sklearn.cross_validation.train_test_split`:

   utility function to split the data into a development set usable

   for fitting a GridSearchCV instance and an evaluation set for

   its final evaluation.

 

   :func:`sklearn.metrics.make_scorer`:

   Make a scorer from a performance metric or loss function.

 

   """

   def __init__(self, estimator, param_grid, scoring=None,

    fit_params=None,

       n_jobs=1, iid=True, refit=True, cv=None, verbose=0,

       pre_dispatch='2*n_jobs', error_score='raise'):

       super(GridSearchCV, self).__init__(estimator, scoring, fit_params,

        n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score)

       self.param_grid = param_grid

       _check_param_grid(param_grid)

 

   def fit(self, X, y=None):

       """Run fit with all sets of parameters.

       Parameters

       ----------

       X : array-like, shape = [n_samples, n_features]

           Training vector, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like, shape = [n_samples] or [n_samples, n_output],

        optional

           Target relative to X for classification or regression;

           None for unsupervised learning.

       """

       return self._fit(X, y, ParameterGrid(self.param_grid))


相关文章
|
1月前
|
安全 Java 容器
线程安全的集合类
线程安全的集合类
|
1月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
34 0
|
1月前
|
存储 缓存 安全
【C/C++ 关键字 存储类说明符 】 线程局部变量的魔法:C++ 中 thread_local的用法
【C/C++ 关键字 存储类说明符 】 线程局部变量的魔法:C++ 中 thread_local的用法
33 0
|
14天前
|
存储 安全 Java
java多线程之原子操作类
java多线程之原子操作类
|
15天前
|
Java
Java中的多线程实现:使用Thread类与Runnable接口
【4月更文挑战第8天】本文将详细介绍Java中实现多线程的两种方法:使用Thread类和实现Runnable接口。我们将通过实例代码展示如何创建和管理线程,以及如何处理线程同步问题。最后,我们将比较这两种方法的优缺点,以帮助读者在实际开发中选择合适的多线程实现方式。
21 4
|
17天前
|
Java Spring
springboot单类集中定义线程池
该内容是关于Spring中异步任务的配置和使用步骤。首先,在启动类添加`@EnableAsync`注解开启异步支持。然后,自定义线程池类`EventThreadPool`,设置核心和最大线程数、存活时间等参数。接着,将线程池bean注入到Spring中,如`@Bean(&quot;RewardThreadPool&quot;)`。最后,在需要异步执行的方法上使用`@Async`注解,例如在一个定时任务类中,使用`@Scheduled(cron = &quot;...&quot;)`和`@Async`结合实现异步定时任务。
15 2
|
27天前
|
Linux API C++
【C++ 线程包裹类设计】跨平台C++线程包装类:属性设置与平台差异的全面探讨
【C++ 线程包裹类设计】跨平台C++线程包装类:属性设置与平台差异的全面探讨
50 2
|
29天前
|
XML 机器学习/深度学习 算法
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
目标检测算法训练数据准备——Penn-Fudan数据集预处理实例说明(附代码)
30 1
|
1月前
|
安全 C++ 开发者
【C++多线程同步】C++多线程同步和互斥的关键:std::mutex和相关类的全面使用教程与深度解析
【C++多线程同步】C++多线程同步和互斥的关键:std::mutex和相关类的全面使用教程与深度解析
18 0
|
1月前
|
安全 Java Unix
【C++ 包裹类 std::thread】探索C++11 std::thread:如何使用它来创建、销毁和管理线程
【C++ 包裹类 std::thread】探索C++11 std::thread:如何使用它来创建、销毁和管理线程
34 0