ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

简介: ML之SVM:利用SVM算法(超参数组合进行单线程网格搜索+3fCrVa)对20类新闻文本数据集进行分类预测、评估

输出结果

Fitting 3 folds for each of 12 candidates, totalling 36 fits

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   6.2s

[Parallel(n_jobs=1)]: Done   1 out of   1 | elapsed:    6.2s remaining:    0.0s

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   7.1s

[CV] svc__C=0.1, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=0.01 -   7.0s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.9s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.8s

[CV] svc__C=0.1, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=0.1 -   6.3s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   6.3s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   7.0s

[CV] svc__C=0.1, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=0.1, svc__gamma=1.0 -   8.1s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -   8.8s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -  10.7s

[CV] svc__C=0.1, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=0.1, svc__gamma=10.0 -   9.4s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   8.4s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   6.7s

[CV] svc__C=1.0, svc__gamma=0.01 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=0.01 -   6.9s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.6s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.2s

[CV] svc__C=1.0, svc__gamma=0.1 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=0.1 -   6.8s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   7.6s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   7.7s

[CV] svc__C=1.0, svc__gamma=1.0 ......................................

[CV] ............................. svc__C=1.0, svc__gamma=1.0 -   8.2s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   6.7s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   8.4s

[CV] svc__C=1.0, svc__gamma=10.0 .....................................

[CV] ............................ svc__C=1.0, svc__gamma=10.0 -   9.5s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -  10.1s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -   9.9s

[CV] svc__C=10.0, svc__gamma=0.01 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=0.01 -   8.8s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   9.2s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   7.7s

[CV] svc__C=10.0, svc__gamma=0.1 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=0.1 -   6.9s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   8.0s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   9.5s

[CV] svc__C=10.0, svc__gamma=1.0 .....................................

[CV] ............................ svc__C=10.0, svc__gamma=1.0 -   9.0s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   8.6s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   8.1s

[CV] svc__C=10.0, svc__gamma=10.0 ....................................

[CV] ........................... svc__C=10.0, svc__gamma=10.0 -   9.0s

[Parallel(n_jobs=1)]: Done  36 out of  36 | elapsed:  4.8min finished

单线程:输出最佳模型在测试集上的准确性: 0.8226666666666667


设计思

image.png

 

核心代

class GridSearchCV(BaseSearchCV):

   """Exhaustive search over specified parameter values for an estimator.

 

   .. deprecated:: 0.18

   This module will be removed in 0.20.

   Use :class:`sklearn.model_selection.GridSearchCV` instead.

 

   Important members are fit, predict.

 

   GridSearchCV implements a "fit" and a "score" method.

   It also implements "predict", "predict_proba", "decision_function",

   "transform" and "inverse_transform" if they are implemented in the

   estimator used.

 

   The parameters of the estimator used to apply these methods are

    optimized

   by cross-validated grid-search over a parameter grid.

 

   Read more in the :ref:`User Guide <grid_search>`.

 

   Parameters

   ----------

   estimator : estimator object.

   A object of that type is instantiated for each grid point.

   This is assumed to implement the scikit-learn estimator interface.

   Either estimator needs to provide a ``score`` function,

   or ``scoring`` must be passed.

 

   param_grid : dict or list of dictionaries

   Dictionary with parameters names (string) as keys and lists of

   parameter settings to try as values, or a list of such

   dictionaries, in which case the grids spanned by each dictionary

   in the list are explored. This enables searching over any sequence

   of parameter settings.

 

   scoring : string, callable or None, default=None

   A string (see model evaluation documentation) or

   a scorer callable object / function with signature

   ``scorer(estimator, X, y)``.

   If ``None``, the ``score`` method of the estimator is used.

 

   fit_params : dict, optional

   Parameters to pass to the fit method.

 

   n_jobs: int, default: 1 :

   The maximum number of estimators fit in parallel.

 

   - If -1 all CPUs are used.

 

   - If 1 is given, no parallel computing code is used at all,

   which is useful for debugging.

 

   - For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.

   For example, with ``n_jobs = -2`` all CPUs but one are used.

 

   .. versionchanged:: 0.17

   Upgraded to joblib 0.9.3.

 

   pre_dispatch : int, or string, optional

   Controls the number of jobs that get dispatched during parallel

   execution. Reducing this number can be useful to avoid an

   explosion of memory consumption when more jobs get dispatched

   than CPUs can process. This parameter can be:

 

   - None, in which case all the jobs are immediately

   created and spawned. Use this for lightweight and

   fast-running jobs, to avoid delays due to on-demand

   spawning of the jobs

 

   - An int, giving the exact number of total jobs that are

   spawned

 

   - A string, giving an expression as a function of n_jobs,

   as in '2*n_jobs'

 

   iid : boolean, default=True

   If True, the data is assumed to be identically distributed across

   the folds, and the loss minimized is the total loss per sample,

   and not the mean loss across the folds.

 

   cv : int, cross-validation generator or an iterable, optional

   Determines the cross-validation splitting strategy.

   Possible inputs for cv are:

 

   - None, to use the default 3-fold cross-validation,

   - integer, to specify the number of folds.

   - An object to be used as a cross-validation generator.

   - An iterable yielding train/test splits.

 

   For integer/None inputs, if the estimator is a classifier and ``y`` is

   either binary or multiclass,

   :class:`sklearn.model_selection.StratifiedKFold` is used. In all

   other cases, :class:`sklearn.model_selection.KFold` is used.

 

   Refer :ref:`User Guide <cross_validation>` for the various

   cross-validation strategies that can be used here.

 

   refit : boolean, default=True

   Refit the best estimator with the entire dataset.

   If "False", it is impossible to make predictions using

   this GridSearchCV instance after fitting.

 

   verbose : integer

   Controls the verbosity: the higher, the more messages.

 

   error_score : 'raise' (default) or numeric

   Value to assign to the score if an error occurs in estimator fitting.

   If set to 'raise', the error is raised. If a numeric value is given,

   FitFailedWarning is raised. This parameter does not affect the refit

   step, which will always raise the error.

 

 

   Examples

   --------

   >>> from sklearn import svm, grid_search, datasets

   >>> iris = datasets.load_iris()

   >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}

   >>> svr = svm.SVC()

   >>> clf = grid_search.GridSearchCV(svr, parameters)

   >>> clf.fit(iris.data, iris.target)

   ...                             # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS

   GridSearchCV(cv=None, error_score=...,

   estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,

   decision_function_shape='ovr', degree=..., gamma=...,

   kernel='rbf', max_iter=-1, probability=False,

   random_state=None, shrinking=True, tol=...,

   verbose=False),

   fit_params={}, iid=..., n_jobs=1,

   param_grid=..., pre_dispatch=..., refit=...,

   scoring=..., verbose=...)

 

 

   Attributes

   ----------

   grid_scores_ : list of named tuples

   Contains scores for all parameter combinations in param_grid.

   Each entry corresponds to one parameter setting.

   Each named tuple has the attributes:

 

   * ``parameters``, a dict of parameter settings

   * ``mean_validation_score``, the mean score over the

   cross-validation folds

   * ``cv_validation_scores``, the list of scores for each fold

 

   best_estimator_ : estimator

   Estimator that was chosen by the search, i.e. estimator

   which gave highest score (or smallest loss if specified)

   on the left out data. Not available if refit=False.

 

   best_score_ : float

   Score of best_estimator on the left out data.

 

   best_params_ : dict

   Parameter setting that gave the best results on the hold out data.

 

   scorer_ : function

   Scorer function used on the held out data to choose the best

   parameters for the model.

 

   Notes

   ------

   The parameters selected are those that maximize the score of the left

    out

   data, unless an explicit score is passed in which case it is used instead.

 

   If `n_jobs` was set to a value higher than one, the data is copied for

    each

   point in the grid (and not `n_jobs` times). This is done for efficiency

   reasons if individual jobs take very little time, but may raise errors if

   the dataset is large and not enough memory is available.  A

    workaround in

   this case is to set `pre_dispatch`. Then, the memory is copied only

   `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *

   n_jobs`.

 

   See Also

   ---------

   :class:`ParameterGrid`:

   generates all the combinations of a hyperparameter grid.

 

   :func:`sklearn.cross_validation.train_test_split`:

   utility function to split the data into a development set usable

   for fitting a GridSearchCV instance and an evaluation set for

   its final evaluation.

 

   :func:`sklearn.metrics.make_scorer`:

   Make a scorer from a performance metric or loss function.

 

   """

   def __init__(self, estimator, param_grid, scoring=None,

    fit_params=None,

       n_jobs=1, iid=True, refit=True, cv=None, verbose=0,

       pre_dispatch='2*n_jobs', error_score='raise'):

       super(GridSearchCV, self).__init__(estimator, scoring, fit_params,

        n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score)

       self.param_grid = param_grid

       _check_param_grid(param_grid)

 

   def fit(self, X, y=None):

       """Run fit with all sets of parameters.

       Parameters

       ----------

       X : array-like, shape = [n_samples, n_features]

           Training vector, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like, shape = [n_samples] or [n_samples, n_output],

        optional

           Target relative to X for classification or regression;

           None for unsupervised learning.

       """

       return self._fit(X, y, ParameterGrid(self.param_grid))


相关文章
|
11月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
1047 6
|
9月前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
673 70
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
366 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
在 Python 编程中,算法的性能至关重要。本文将带您深入了解算法复杂度的概念,包括时间复杂度和空间复杂度。通过具体的例子,如冒泡排序算法 (`O(n^2)` 时间复杂度,`O(1)` 空间复杂度),我们将展示如何评估算法的性能。同时,我们还会介绍如何优化算法,例如使用 Python 的内置函数 `max` 来提高查找最大值的效率,或利用哈希表将查找时间从 `O(n)` 降至 `O(1)`。此外,还将介绍使用 `timeit` 模块等工具来评估算法性能的方法。通过不断实践,您将能更高效地优化 Python 程序。
232 4
|
算法 搜索推荐 开发者
别再让复杂度拖你后腿!Python 算法设计与分析实战,教你如何精准评估与优化!
【7月更文挑战第23天】在Python编程中,掌握算法复杂度—时间与空间消耗,是提升程序效能的关键。算法如冒泡排序($O(n^2)$时间/$O(1)$空间),或使用Python内置函数找最大值($O(n)$时间),需精确诊断与优化。数据结构如哈希表可将查找从$O(n)$降至$O(1)$。运用`timeit`模块评估性能,深入理解数据结构和算法,使Python代码更高效。持续实践与学习,精通复杂度管理。
114 9
|
机器学习/深度学习 数据采集 算法
Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战
Python实现贝叶斯岭回归模型(BayesianRidge算法)并使用K折交叉验证进行模型评估项目实战
|
机器学习/深度学习 算法 搜索推荐
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
支付宝商业化广告算法问题之在DNN模型中,特征的重要性如何评估
148 0
|
6天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
8天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)

热门文章

最新文章