基于极大似然算法的系统参数辨识matlab仿真

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。

1.程序功能描述
基于极大似然算法的系统参数辨识。对系统的参数a1,b1,a2,b2分别进行估计,计算估计误差以及估计收敛曲线,然后对比不同信噪比下的估计误差。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg

3.核心程序

```% 迭代计算参数值和误差值
for k=5:LEN
% 构造观测向量
h = [-yout(k-1);-yout(k-2);inputs(k-3);inputs(k-4);noise(k-1);noise(k-2)];
% 滤波后的观测向量
hf = h;
% 计算增益
K = p0hfinv(hf'p0hf+1);
% 更新协方差矩阵
p = [eye(6,6)-Khf']p0;
% 计算残差
noise(k) = yout(k)-h'Pest1;
% 更新参数估计
Pest = Pest1+K
noise(k);
% 更新协方差矩阵
p0 = p;
% 保存当前参数估计以便下一次迭代使用
Pest1 = Pest;
end
disp('参数估计值a1,a2,b1,b2');
Pest1(1:4)

figure
k=1:LEN;
plot(k,a1,'k:',k,a2,'b',k,b1,'r',k,b2,'m:');
xlabel('k')
ylabel('参数')
legend(['a1=',num2str(A1)],['a2=',num2str(A2)],['b1=',num2str(B1)],['b2=',num2str(B2)]);
title('参数辨识结果');
figure
subplot(221);
k=1:LEN;
semilogy(k,e1,'b');
xlabel('k');
ylabel('error');
title('误差曲线')
grid on
subplot(222);
k=1:LEN;
semilogy(k,e2,'b');
xlabel('k');
ylabel('error');
title('误差曲线')
grid on
subplot(223);
k=1:LEN;
semilogy(k,e3,'b');
xlabel('k');
ylabel('error');
title('误差曲线')
grid on
subplot(224);
k=1:LEN;
semilogy(k,e4,'b');
xlabel('k');
ylabel('error');
title('误差曲线')
grid on
34

```

4.本算法原理
极大似然估计(Maximum Likelihood Estimation, MLE)是一种统计方法,用于从样本数据中估计概率分布的参数。其核心思想是选择参数值,使得观测数据出现的概率最大化。系统参数辨识是指利用观测数据来估计系统模型中的未知参数。这些参数可以是线性系统的系数、非线性系统的参数化形式中的常数,或者是随机过程中的统计特性等。

   极大似然估计是一种统计推断方法,用于估计一个概率模型的参数值,使得观测数据在给定这些参数值时出现的可能性最大。在系统参数辨识中,我们通常假设系统的输出可以通过某种概率模型来描述,而该模型包含了一些未知的系统参数。我们的目标是根据已知的观测数据来确定这些参数。

1009f48b1ab7732ae2686c492dee32e4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

  极大似然算法在系统参数辨识中是一种强大且广泛使用的工具。它通过最大化观测数据的似然函数来估计模型参数,从而提供了一种从数据中学习系统行为的方法。
相关文章
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
29天前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
48 10
|
23天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
29天前
|
算法
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
31 1
|
1月前
|
传感器 算法 安全
基于云模型的车辆行驶速度估计算法matlab仿真
本项目基于云模型的车辆行驶速度估计算法,利用MATLAB2022A实现仿真。相比传统传感器测量方法,该算法通过数据驱动与智能推理间接估计车速,具备低成本、高适应性特点。核心程序通过逆向正态云发生器提取样本数据的数字特征(期望、熵、超熵),再用正向云发生器生成云滴进行速度估算。算法结合优化调整云模型参数及规则库更新,提升速度估计准确性。验证结果显示,其估算值与高精度传感器测量值高度吻合,适用于交通流量监测、安全预警等场景。
|
1月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
11月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
435 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
11月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
263 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
11月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
426 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章