DL之RNN:人工智能为你写诗——基于TF利用RNN算法实现【机器为你写诗】、训练&测试过程全记录

简介: DL之RNN:人工智能为你写诗——基于TF利用RNN算法实现【机器为你写诗】、训练&测试过程全记录

输出结果


1、test01


<unk><unk>风下,天上不相逢。

一人不得别,不得不可寻。

何事无时事,谁知一日年。

一年多旧国,一处不相寻。

白发何人见,清辉自有人。

何当不知事,相送不相思。

此去无相见,何年有旧年。

相思一阳处,相送不能归。

不得千株下,何时不得时。

此心不可见,此日不相思。

何事有归客,何言不见时。

何处不知处,不知山上时。

何当不可问,一事不知情。

此去不知事,无人不有身。

相逢何处见,不觉白云间。

白云一相见,一月不知时。

一夜一秋色,青楼不可知。

江西山水下,山下白头心。

此事何人见,孤舟向日深。

何当无一事,此路不相亲。

何必有山里,不知归去人。

相知不相识,此地不能闻。

白发千株树,秋风落日寒。

2、test02


不得无时人,何人不知别。

不见一时人,相思何日在。

一夜不可知,何时无一日。

一人不自见,何处有人情。

何处不知此,何人见此年。

何时不得处,此日不知君。

一日何人得,何由有此身。

相思无不得,一去不知君。

此日何人见,东风满月中。

无知不得去,不见不相思。

不得千峰上,相逢独不穷。

何年不可待,一夜有春风。

不见南江路,相思一夜归。

何人知此路,此日更难归。

白日无人处,秋光入水流。

江南无限路,相忆在山城。

何处知何事,孤城不可归。

山边秋月尽,江水水风生。

不有南江客,何时有故乡。

山中山上水,山上水中风。

何处不相访,何年有此心。

江边秋雨尽,山水白云寒。

3、test03


一朝多不见,无处在人人。

一里无人去,无人见故山。

何年不知别,此地有相亲。

白首何时去,春风不得行。

不知归去去,谁见此来情。

不有青山去,谁知不自知。

一时何处去,此去有君人。

不见南江路,何时是白云。

不知归客去,相忆不成秋。

不得东西去,何人有一身。

不能知此事,不觉是人情。

一里无时事,相逢不得心。

江南秋雨尽,风落夜来深。

何处不知别,春来不自知。

一朝无一处,何处是江南。

一里不相见,东西无一人。

一朝归去处,何事见沧洲。

此去无年处,何年有远心。

不知山上客,不是故人心。

一里不可得,无人有一年。

何人不见处,不得一朝生。

不见青云客,何人是此时。


模型监控






训练、测试过程全记录


1、训练过程


2018-10-13 22:31:33.935213:

step: 10/10000...  loss: 6.5868...  0.1901 sec/batch

step: 20/10000...  loss: 6.4824...  0.2401 sec/batch

step: 30/10000...  loss: 6.3176...  0.2401 sec/batch

step: 40/10000...  loss: 6.2126...  0.2401 sec/batch

step: 50/10000...  loss: 6.0081...  0.2301 sec/batch

step: 60/10000...  loss: 5.7657...  0.2401 sec/batch

step: 70/10000...  loss: 5.6694...  0.2301 sec/batch

step: 80/10000...  loss: 5.6661...  0.2301 sec/batch

step: 90/10000...  loss: 5.6736...  0.2301 sec/batch

step: 100/10000...  loss: 5.5698...  0.2201 sec/batch

step: 110/10000...  loss: 5.6083...  0.2301 sec/batch

step: 120/10000...  loss: 5.5252...  0.2301 sec/batch

step: 130/10000...  loss: 5.4708...  0.2301 sec/batch

step: 140/10000...  loss: 5.4311...  0.2401 sec/batch

step: 150/10000...  loss: 5.4571...  0.2701 sec/batch

step: 160/10000...  loss: 5.5295...  0.2520 sec/batch

step: 170/10000...  loss: 5.4211...  0.2401 sec/batch

step: 180/10000...  loss: 5.4161...  0.2802 sec/batch

step: 190/10000...  loss: 5.4389...  0.4943 sec/batch

step: 200/10000...  loss: 5.3380...  0.4332 sec/batch

……

step: 790/10000...  loss: 5.2031...  0.2301 sec/batch

step: 800/10000...  loss: 5.2537...  0.2301 sec/batch

step: 810/10000...  loss: 5.0923...  0.2301 sec/batch

step: 820/10000...  loss: 5.1930...  0.2501 sec/batch

step: 830/10000...  loss: 5.1636...  0.2535 sec/batch

step: 840/10000...  loss: 5.1357...  0.2801 sec/batch

step: 850/10000...  loss: 5.0844...  0.2236 sec/batch

step: 860/10000...  loss: 5.2004...  0.2386 sec/batch

step: 870/10000...  loss: 5.1894...  0.2401 sec/batch

step: 880/10000...  loss: 5.1631...  0.2501 sec/batch

step: 890/10000...  loss: 5.1297...  0.2477 sec/batch

step: 900/10000...  loss: 5.1044...  0.2401 sec/batch

step: 910/10000...  loss: 5.0738...  0.2382 sec/batch

step: 920/10000...  loss: 5.0971...  0.2701 sec/batch

step: 930/10000...  loss: 5.1829...  0.2501 sec/batch

step: 940/10000...  loss: 5.1822...  0.2364 sec/batch

step: 950/10000...  loss: 5.1883...  0.2401 sec/batch

step: 960/10000...  loss: 5.0521...  0.2301 sec/batch

step: 970/10000...  loss: 5.0848...  0.2201 sec/batch

step: 980/10000...  loss: 5.0598...  0.2201 sec/batch

step: 990/10000...  loss: 5.0421...  0.2701 sec/batch

step: 1000/10000...  loss: 5.1234...  0.2323 sec/batch

step: 1010/10000...  loss: 5.0744...  0.2356 sec/batch

step: 1020/10000...  loss: 5.0408...  0.2401 sec/batch

step: 1030/10000...  loss: 5.1138...  0.2417 sec/batch

step: 1040/10000...  loss: 4.9961...  0.2601 sec/batch

step: 1050/10000...  loss: 4.9691...  0.2401 sec/batch

step: 1060/10000...  loss: 4.9938...  0.2601 sec/batch

step: 1070/10000...  loss: 4.9778...  0.2601 sec/batch

step: 1080/10000...  loss: 5.0157...  0.3600 sec/batch

……

step: 4440/10000...  loss: 4.7136...  0.2757 sec/batch

step: 4450/10000...  loss: 4.5896...  0.2767 sec/batch

step: 4460/10000...  loss: 4.6408...  0.3088 sec/batch

step: 4470/10000...  loss: 4.6901...  0.2737 sec/batch

step: 4480/10000...  loss: 4.5717...  0.2707 sec/batch

step: 4490/10000...  loss: 4.7523...  0.2838 sec/batch

step: 4500/10000...  loss: 4.7592...  0.2998 sec/batch

step: 4510/10000...  loss: 4.6054...  0.2878 sec/batch

step: 4520/10000...  loss: 4.7039...  0.2868 sec/batch

step: 4530/10000...  loss: 4.6380...  0.2838 sec/batch

step: 4540/10000...  loss: 4.5378...  0.2777 sec/batch

step: 4550/10000...  loss: 4.7376...  0.3098 sec/batch

step: 4560/10000...  loss: 4.7103...  0.2797 sec/batch

step: 4570/10000...  loss: 4.7170...  0.2767 sec/batch

step: 4580/10000...  loss: 4.7307...  0.3168 sec/batch

step: 4590/10000...  loss: 4.7139...  0.3108 sec/batch

step: 4600/10000...  loss: 4.7419...  0.3028 sec/batch

step: 4610/10000...  loss: 4.7980...  0.2918 sec/batch

step: 4620/10000...  loss: 4.7127...  0.2797 sec/batch

step: 4630/10000...  loss: 4.7264...  0.2858 sec/batch

step: 4640/10000...  loss: 4.6384...  0.3419 sec/batch

step: 4650/10000...  loss: 4.6761...  0.2978 sec/batch

step: 4660/10000...  loss: 4.8158...  0.3590 sec/batch

step: 4670/10000...  loss: 4.7579...  0.2828 sec/batch

step: 4680/10000...  loss: 4.7702...  0.2777 sec/batch

step: 4690/10000...  loss: 4.6909...  0.2607 sec/batch

step: 4700/10000...  loss: 4.6037...  0.2808 sec/batch

step: 4710/10000...  loss: 4.6775...  0.2848 sec/batch

step: 4720/10000...  loss: 4.6074...  0.2838 sec/batch

step: 4730/10000...  loss: 4.7280...  0.3088 sec/batch

step: 4740/10000...  loss: 4.7241...  0.3539 sec/batch

step: 4750/10000...  loss: 4.5496...  0.2948 sec/batch

step: 4760/10000...  loss: 4.6488...  0.3189 sec/batch

step: 4770/10000...  loss: 4.6698...  0.3048 sec/batch

step: 4780/10000...  loss: 4.6410...  0.3068 sec/batch

step: 4790/10000...  loss: 4.7408...  0.3329 sec/batch

step: 4800/10000...  loss: 4.6425...  0.2928 sec/batch

step: 4810/10000...  loss: 4.6900...  0.2978 sec/batch

step: 4820/10000...  loss: 4.5715...  0.3499 sec/batch

step: 4830/10000...  loss: 4.7289...  0.2868 sec/batch

step: 4840/10000...  loss: 4.7500...  0.2998 sec/batch

step: 4850/10000...  loss: 4.7674...  0.2968 sec/batch

step: 4860/10000...  loss: 4.6832...  0.3078 sec/batch

step: 4870/10000...  loss: 4.7478...  0.3008 sec/batch

step: 4880/10000...  loss: 4.7895...  0.2817 sec/batch

……

step: 9710/10000...  loss: 4.5839...  0.2601 sec/batch

step: 9720/10000...  loss: 4.4666...  0.2401 sec/batch

step: 9730/10000...  loss: 4.6392...  0.2201 sec/batch

step: 9740/10000...  loss: 4.5415...  0.2201 sec/batch

step: 9750/10000...  loss: 4.6513...  0.2201 sec/batch

step: 9760/10000...  loss: 4.6485...  0.2201 sec/batch

step: 9770/10000...  loss: 4.5317...  0.2201 sec/batch

step: 9780/10000...  loss: 4.5547...  0.2301 sec/batch

step: 9790/10000...  loss: 4.3995...  0.2301 sec/batch

step: 9800/10000...  loss: 4.5596...  0.2301 sec/batch

step: 9810/10000...  loss: 4.5636...  0.2301 sec/batch

step: 9820/10000...  loss: 4.4348...  0.2201 sec/batch

step: 9830/10000...  loss: 4.5268...  0.2201 sec/batch

step: 9840/10000...  loss: 4.5790...  0.2201 sec/batch

step: 9850/10000...  loss: 4.6265...  0.2301 sec/batch

step: 9860/10000...  loss: 4.6017...  0.2401 sec/batch

step: 9870/10000...  loss: 4.4009...  0.2301 sec/batch

step: 9880/10000...  loss: 4.4448...  0.2201 sec/batch

step: 9890/10000...  loss: 4.5858...  0.2201 sec/batch

step: 9900/10000...  loss: 4.5622...  0.2201 sec/batch

step: 9910/10000...  loss: 4.4015...  0.2301 sec/batch

step: 9920/10000...  loss: 4.5220...  0.2301 sec/batch

step: 9930/10000...  loss: 4.5207...  0.2201 sec/batch

step: 9940/10000...  loss: 4.4752...  0.2201 sec/batch

step: 9950/10000...  loss: 4.4572...  0.2301 sec/batch

step: 9960/10000...  loss: 4.5389...  0.2201 sec/batch

step: 9970/10000...  loss: 4.5561...  0.2301 sec/batch

step: 9980/10000...  loss: 4.4487...  0.2401 sec/batch

step: 9990/10000...  loss: 4.4851...  0.2301 sec/batch

step: 10000/10000...  loss: 4.5944...  0.2201 sec/batch

2、测试过程




训练的数据集


1、大量的五言唐诗


寒随穷律变,春逐鸟声开。

初风飘带柳,晚雪间花梅。

碧林青旧竹,绿沼翠新苔。

芝田初雁去,绮树巧莺来。

晚霞聊自怡,初晴弥可喜。

日晃百花色,风动千林翠。

池鱼跃不同,园鸟声还异。

寄言博通者,知予物外志。

一朝春夏改,隔夜鸟花迁。

阴阳深浅叶,晓夕重轻烟。

哢莺犹响殿,横丝正网天。

珮高兰影接,绶细草纹连。

碧鳞惊棹侧,玄燕舞檐前。

何必汾阳处,始复有山泉。

夏律昨留灰,秋箭今移晷。

峨嵋岫初出,洞庭波渐起。

桂白发幽岩,菊黄开灞涘。

运流方可叹,含毫属微理。

寒惊蓟门叶,秋发小山枝。

松阴背日转,竹影避风移。

提壶菊花岸,高兴芙蓉池。

欲知凉气早,巢空燕不窥。

山亭秋色满,岩牖凉风度。

疏兰尚染烟,残菊犹承露。

古石衣新苔,新巢封古树。

历览情无极,咫尺轮光暮。

慨然抚长剑,济世岂邀名。

星旗纷电举,日羽肃天行。

遍野屯万骑,临原驻五营。

登山麾武节,背水纵神兵。

在昔戎戈动,今来宇宙平。

翠野驻戎轩,卢龙转征旆。

遥山丽如绮,长流萦似带。

海气百重楼,岩松千丈盖。

兹焉可游赏,何必襄城外。

玄兔月初明,澄辉照辽碣。

映云光暂隐,隔树花如缀。

魄满桂枝圆,轮亏镜彩缺。

临城却影散,带晕重围结。

驻跸俯九都,停观妖氛灭。

碧原开雾隰,绮岭峻霞城。

烟峰高下翠,日浪浅深明。

斑红妆蕊树,圆青压溜荆。

迹岩劳傅想,窥野访莘情。

巨川何以济,舟楫伫时英。

春蒐驰骏骨,总辔俯长河。

霞处流萦锦,风前漾卷罗。

水花翻照树,堤兰倒插波。

岂必汾阴曲,秋云发棹歌。

重峦俯渭水,碧嶂插遥天。

……



 


目录
打赏
0
0
0
0
1044
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
534 55
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
302 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
跨越机器物理世界和AI虚拟世界之间的鸿沟,是软硬件一体化创新关键 法思诺创新 法思诺创新​
法思诺创新专注于跨越机器物理世界与AI虚拟世界的鸿沟,推动软硬件一体化创新。在物理世界中,机器人虽有强壮躯体却缺乏灵活大脑;而在虚拟世界里,AI虽智慧无穷却无实体行动力。两者融合是未来智能化发展的关键。通过AI赋能,智能机器人已在智能制造、智慧物流、智慧服务及特种作业等领域大显身手。例如,AI工业机器人提升生产精度与效率,仓储机器人优化物流调度,服务机器人提供人性化交互,特种机器人执行危险任务。软硬件一体化创新实现了机器人感知、决策、运动和人机交互的全面智能化,是智能化时代的大势所趋。正如威廉·吉布森所言:“未来已来,只是尚未均匀分布。”率先拥抱软硬件一体化创新者,将赢得未来。
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
127 1
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
261 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
257 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
283 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
AI与艺术创作:机器的艺术天赋
【10月更文挑战第31天】本文探讨了AI在艺术创作中的应用及其独特“艺术天赋”。从绘画、音乐、文学到设计,AI通过计算机视觉、自然语言处理和生成对抗网络等技术,逐渐展现出强大的创作能力。尽管面临原创性、审美标准和法律伦理等挑战,AI艺术创作仍为艺术界带来了新的视角和灵感,未来有望与人类艺术家共同推动艺术的创新与发展。
下一篇
oss创建bucket
目录
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等