ML之ECS:利用ECS的PAI进行傻瓜式操作机器学习的算法

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: ML之ECS:利用ECS的PAI进行傻瓜式操作机器学习的算法

ECS的PAI的简介


image.png

     阿里云机器学习是基于阿里云分布式计算引擎的一款机器学习算法平台,以极低的代价帮助您的业务从BI时代跨入AI时代,真正实现人工智能触手可及。

算法丰富 :100余种算法组件,覆盖回归、分类、聚类、文本分析等算法。  

深度学习(GPU) :加强优化Tensorflow等深度学习框架性能,提供GPU分布式计算。  

可视化操作界面 :拖拽式算法组件进行建模,降低AI初学者门槛,提升AI专业者效率。  

一站式服务 :提供完整的数据挖掘链路,做到一站式体验。




优质、丰富的机器学习算法



机器学习平台上的算法都是经过阿里大规模业务锤炼而成的,从算法的丰富性角度来看,阿里云机器学习平台不仅提供了基础的聚类、回归类等机器学习算法,也提供了文本分析、特征处理等比较复杂的算法。




image.png


ECS的PAI的操作攻略



机器学习指机器通过统计学算法,对大量的历史数据进行学习从而生成经验模型,利用经验模型指导业务。目前机器学习主要在以下方面发挥作用:


营销类场景:商品推荐、用户群体画像、广告精准投放

金融类场景:贷款发放预测、金融风险控制、股票走势预测、黄金价格预测

SNS关系挖掘:微博粉丝领袖分析、社交关系链分析

文本类场景:新闻分类、关键词提取、文章摘要、文本内容分析

非结构化数据处理场景:图片分类、图片文本内容提取OCR

其它各类预测场景:降雨预测、足球比赛结果预测

机器学习笼统地讲可以分为三类:


有监督学习(supervised learning):指每个样本都有对应的期望值,通过模型搭建,完成从输入的特征向量到目标值的映射,典型的例子是回归和分类问题。

无监督学习(unsupervised learning):指在所有的样本中没有任何目标值,期望从数据本身发现一些潜在的规律,例如一些简单的聚类。

增强学习(Reinforcement learning):相对来说比较复杂,是指一个系统和外界环境不断地交互,获得外界反馈,然后决定自身的行为,达到长期目标的最优化。其中典型的案例就是阿法狗下围棋,或者无人驾驶。


ML案例


每一个步骤右键都可以可视化输出结果

1、案例之基于画像特征的推荐


image.png

image.png




花钱开通GPU,才可以使用DL框架

image.png

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
137 4
|
3天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
36 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
18天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
41 2
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
108 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
43 0
|
2月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
41 0
|
3月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。