AI公开课:18.05.09 李英睿(碳云智能)—北大AI第十讲之《人工智能在生命科学中的应用》课堂笔记——带你了解生命科学

简介: AI公开课:18.05.09 李英睿(碳云智能)—北大AI第十讲之《人工智能在生命科学中的应用》课堂笔记——带你了解生命科学

WHAT


    人工智能的发展近期毫无疑问受到了人们极大的关注,医疗领域一直以来,都希望通过人工智能的发展来提高医疗技术,使得行业发展更上一层楼。IBM Watson的发展是医疗领域的一个里程碑,但是在医疗的其他领域,也不乏人工智能的身影:据统计,目前在新药研发、辅助疾病诊断、辅助治疗、健康管理、医学影像、临床决策支持、医院管理、便携设备、康复医疗和生物医学研究等十大领域,都有人工智能的实操案例。

image.png


AI in Medical Health


    AI在医疗健康领域研发最少。美国德克萨斯大学副校长Lynda Chin教授说过“ 人类大脑的容量是有限的,与日俱增的患者数据和爆炸式信息增长,让医生无法跟上医学知识发展的步伐,AI将成为辅佐医生提高认知能力的最佳工具和手段。”



相关资料


据埃森哲(Accenture)的一份报告估计,到2026年,大数据与医学和制药领域的机器学习相结合将产生每年1500亿美元的惊人价值。这个数字反映了人工智能(AI)工具帮助医生、病人、保险公司和监管人员做出更好决策、优化创新以及提高研究和临床试验效率的潜力。为此,5月1日,GEN网站整理罗列了人工智能在生命科学领域内六个最有价值的应用。


1.诊断疾病

医学面临的最大挑战是疾病的正确诊断和识别,这也是机器学习发展的重中之重。2015年的一份报告显示,针对超800种癌症的治疗方案正在临床试验中。而利用机器学习可使癌症识别更加精确。以,一家总部位于波士顿的生物制药公司Berg为例,目前公司正在利用AI平台对临床试验患者数据进行分析,以促进治疗各种疾病的新药开发。

2.个体化用药

关于使用机器学习和预测分析来定制针对个人的特异性治疗潜能,目前正处于研究中。如果成功,这一策略可以优化诊断和治疗方案。目前,研究的重点是有监督的学习,医生可以利用遗传信息和症状缩小诊断范围,或对患者的风险做出有根据的推测。这可以促进更好的预防措施。预计未来10年,先进的健康测量移动应用以及微生物传感器和设备的使用将激增,这将提供丰富的数据,进而有助于有效的研发和更好的治疗方案。

3.药物开发

机器学习在早期药物发现(如新药开发)和研发技术(如下一代测序)中发挥着许多作用。这一领域的第一项是精确医学,它使复杂疾病的识别和可能的治疗方式更有效。MIT临床机器学习小组是使用机器学习促成精密医学的主要参与者之一,侧重于算法开发。英国皇家学会指出,医药开发中的机器学习可以帮助制药公司通过分析制造过程数据来优化生产,并加快生产速度。

4.临床试验

临床试验研究是一个漫长而艰巨的过程。机器学习可以在各种方面帮助缩短这一过程。一种策略是通过对广泛的数据使用高级预测分析,从而更快地确定目标人群的临床试验候选人。麦肯锡( McKinsey )的分析师描述了其他机器学习应用程序,这些应用程序可以通过简化计算理想样本大小、方便患者招募以及使用病历将数据错误降至最低等任务来提高临床试验的效率。

5.放射治疗和放射学

哈佛医学院助理教授Ziad Obermeyer博士在2016年的一次采访中表示:“20年后,放射学家将不会以现在的形式存在。它们看起来更像是电子机器人:监督每分钟阅读数千份研究报告的算法。目前,伦敦大学学院医院的deep mind Health正在开发机器学习算法,通过区分健康组织和癌症组织来提高放射治疗计划的准确性。

6.电子健康记录

支持向量机(Support vector machines用于分类患者电子邮件查询的技术)和光学字符识别(用于数字化手写笔记的技术)是用于文档分类的机器学习系统的基本组件。这些技术的应用案例包括MathWorks的MATLAB (一个具有手写识别应用程序的机器学习工具)和谷歌的云视觉API。MIT临床机器学习小组的重点之一是开发基于机器学习的智能电子健康记录技术,其理念是开发“安全、可解释、能从少量标记的训练数据中学习、理解自然语言、并能在医疗环境和机构中很好地推广的强大机器学习算法”。


现有的多个AI结合生命科学的案例


1.人工智能预测阿兹海默病风险,准确率超 84%

2.Science:自学习式人工智能可协助预测心脏病发作

3.人工智能诊断皮肤癌准确率达91%

4.人工智能走进ICU:可预测病人死亡 准确率达93%

5.厉害!第三军医大利用人工智能30秒内鉴定血型,超99.9%准确率

6.Science:重大突破!利用人工智能鼻子预测分子的气味

7.谷歌研发人工智能眼科医生:用深度学习诊断预防失明

8.人工智能加快乳腺癌风险预测

9.人工智能筛查乳腺癌的效率有多高?比医院老司机们快30倍!

10.人工智能助力癌细胞活体检测


行业研究


IBM

image.png




相关文章
|
10天前
|
人工智能 数据挖掘 大数据
“龟速”到“光速”?算力如何加速 AI 应用进入“快车道”
阿里云将联合英特尔、蚂蚁数字科技专家,带来“云端进化论”特别直播。
51 11
|
24天前
|
开发框架 人工智能 Java
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生
|
10天前
|
缓存 人工智能 架构师
龙蜥社区走进中国农业大学,共探“AI+生命科学” 操作系统优化实践
“AI+生命科学”这一跨学科领域的巨大潜力与重要意义。
|
11天前
|
开发框架 人工智能 Java
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
|
1月前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
233 29
|
20天前
|
数据采集 人工智能 大数据
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
|
21天前
|
人工智能 搜索推荐 API
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
69 2
|
25天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
|
1月前
|
存储 人工智能 监控
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
3343 64
|
20天前
|
开发框架 人工智能 Cloud Native
破茧成蝶:阿里云应用服务器让传统J2EE应用无缝升级AI原生时代
一场跨越20年的技术对话:在杭州某科技园的会议室里,一场特殊的代码评审正在进行。屏幕上同时展示着2005年基于WebLogic开发的供应链系统和2025年接入DeepSeek大模型的智能调度方案——令人惊叹的是,二者的核心业务代码竟保持着惊人的一致性。"我们保住了20年积累的238个核心业务对象,就像修复传世名画时保留了每一笔历史痕迹。"企业CTO的感慨,揭开了阿里云应用服务器助力传统系统智能化转型的奥秘。
57 13