TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+

简介: TF之CNN:CNN实现mnist数据集预测 96%采用placeholder用法+2层C及其max_pool法+隐藏层dropout法+输出层softmax法+目标函数cross_entropy法+

输出结果

后期更新


代码设计

import tensorflow as tf

from tensorflow.examples.tutorials.mnist import input_data

# number 1 to 10 data

mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

def compute_accuracy(v_xs, v_ys):

   global prediction

   y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})

   correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))

   accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

   result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})

   return result

def weight_variable(shape):      

   initial = tf.truncated_normal(shape, stddev=0.1)

   return tf.Variable(initial)

def bias_variable(shape):        

   initial = tf.constant(0.1, shape=shape)      return tf.Variable(initial)

def conv2d(x, W):                

   return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):              

   return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

xs = tf.placeholder(tf.float32, [None, 784]) # 28x28

ys = tf.placeholder(tf.float32, [None, 10])

keep_prob = tf.placeholder(tf.float32)

x_image = tf.reshape(xs, [-1, 28, 28, 1])  

## conv1 layer;

W_conv1 = weight_variable([5,5, 1,32])

b_conv1 = bias_variable([32])        

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

h_pool1 = max_pool_2x2(h_conv1)                        

W_conv2 = weight_variable([5,5, 32, 64])

b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)

h_pool2 = max_pool_2x2(h_conv2)                          

W_fc1 = weight_variable([7*7*64, 1024])

b_fc1 = bias_variable([1024])          

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])          

h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)              

W_fc2 = weight_variable([1024, 10])

b_fc2 = bias_variable([10])

prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# the error between prediction and real data

cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),

                                             reduction_indices=[1]))      

train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)    

sess = tf.Session()

# important step

sess.run(tf.global_variables_initializer())

for i in range(10):  

   batch_xs, batch_ys = mnist.train.next_batch(100)

   sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})

   if i % 50 == 0:

       print(compute_accuracy(

           mnist.test.images, mnist.test.labels))


相关文章
|
7月前
|
机器学习/深度学习 编解码 PyTorch
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)
|
7月前
|
机器学习/深度学习 算法 数据库
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
|
机器学习/深度学习
CNN模型识别cifar数据集
构建简单的CNN模型识别cifar数据集。经过几天的简单学习,尝试写了一个简单的CNN模型通过cifar数据集进行训练。效果一般,测试集上的的表现并不好,说明模型的构建不怎么样。# -*- coding = utf-8 -*-# @Time : 2020/10/16 16:19# @Author : tcc# @File : cifar_test.py# @Software : pycha...
70 0
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
7月前
|
机器学习/深度学习 算法 TensorFlow
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
【视频】神经网络正则化方法防过拟合和R语言CNN分类手写数字图像数据MNIST|数据分享
|
7月前
|
机器学习/深度学习 数据采集 TensorFlow
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST)
|
7月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)
695 4
|
7月前
|
机器学习/深度学习 数据采集 PyTorch
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
PyTorch搭建卷积神经网络(ResNet-50网络)进行图像分类实战(附源码和数据集)
248 1
|
7月前
|
机器学习/深度学习 Python
【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)
【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)
243 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
PyTorch搭建图卷积神经网络(GCN)完成对论文分类及预测实战(附源码和数据集)
344 1

热门文章

最新文章