【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

简介: 【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面利用tensorflow平台进行人脸识别实战,使用的是Olivetti Faces人脸图像 部分数据集展示如下

程序训练过程如下

接下来训练CNN模型 可以看到训练进度和损失值变化

接下来展示人脸识别结果

程序会根据一张图片自动去图片集中寻找相似的人脸 如上图所示

部分代码如下 需要全部源码和数据集请点赞关注收藏后评论区留言私信~~~

from os import listdir
import numpy as np
from PIL import Image
import cv2
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.utils import np_utils
# 读取人脸图片数据
def img2vector(fileNamestr):
    # 创建向量
    returnVect = np.zeros((57,47))    
    image = Image.open(fileNamestr).convert('L')    
    img = np.asarray(image).reshape(57,47)    
    return img
# 制作人脸数据集
def GetDataset(imgDataDir):   
    print('| Step1 |: Get dataset...')
    imgDataDir='faces_4/'
    FileDir = listdir(imgDataDir)
    m = len(FileDir)
    imgarray=[]
    hwLabels=[]
    hwdata=[]
    # 逐个读取图片文件
    for i in range(m):
        # 提取子目录
        className=i
        subdirName='faces_4/'+str(FileDir[i])+'/'
        fileNames = listdir(subdirName)                
        lenFiles=len(fileNames)
        # 提取文件名
        for j in range(lenFiles): 
            fileNamestr = subdirName+fileNames[j]
            hwLabels.append(className)    
            imgarray=img2vector(fileNamestr)
            hwdata.append(imgarray)
    hwdata = np.array(hwdata)
    return hwdata,hwLabels,6
# CNN模型类
class MyCNN(object):
    FILE_PATH = "face_recognition.h5"  # 模型存储/读取目录
    picHeight = 57  # 模型的人脸图片长47,宽57
    picWidth = 47  
    def __init__(self):
        self.model = None
    # 获取训练数据集
    def read_trainData(self, dataset):        
        self.dataset = dataset
    # 建立Sequential模型,并赋予参数
    def build_model(self):
        print('| Step2 |: Init CNN model...')
        self.model = Sequential()
        print('self.dataset.X_train.shape[1:]',self.dataset.X_train.shape[1:])
        self.model.add( Convolution2D( filters=32,
                                      kernel_size=(5, 5),
                                      padding='same',
                                      #dim_ordering='th',
                                      input_shape=self.dataset.X_train.shape[1:]))
        self.model.add(Activation('relu'))
        self.model.add( MaxPooling2D(pool_size=(2, 2),
                                     strides=(2, 2),
                                     padding='same' ) )
        self.model.add(Convolution2D(filters=64, 
                                     kernel_size=(5, 5), 
                                     padding='same') )
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2), 
                                    strides=(2, 2), 
                                    padding='same') )
        self.model.add(Flatten())
        self.model.add(Dense(512))
        self.model.add(Activation('relu'))
        self.model.add(Dense(self.dataset.num_classes))
        self.model.add(Activation('softmax'))
        self.model.summary()
    # 模型训练
    def train_model(self):
        print('| Step3 |: Train CNN model...')
        self.model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
        # epochs:训练代次、batch_size:每次训练样本数
        self.model.fit(self.dataset.X_train, self.dataset.Y_train, epochs=10, batch_size=20)
    def evaluate_model(self):
        loss, accuracy = self.model.evaluate(self.dataset.X_test, self.dataset.Y_test)
        print('| Step4 |: Evaluate performance...')
        print('===================================')        
        print('Loss   Value   is :', loss)
        print('Accuracy Value is :', accuracy)
    def save(self, file_path=FILE_PATH):        
        print('| Step5 |: Save model...')
        self.model.save(file_path)
        print('Model ',file_path,'is succeesfuly saved.')
# 建立一个用于存储和格式化读取训练数据的类
class DataSet(object):
    def __init__(self, path):
        self.num_classes = None
        self.X_train = None
        self.X_test = None
        self.Y_train = None
        self.Y_test = None
        self.picWidth = 47
        self.picHeight = 57        
        self.makeDataSet(path)  # 在这个类初始化的过程中读取path下的训练数据
    def makeDataSet(self, path):
        # 根据指定路径读取出图片、标签和类别数
        imgs, labels, clasNum = GetDataset(path)
        # 将数据集打乱随机分组
        X_train, X_test, y_train, y_test = train_test_split(imgs, labels, test_size=0.2,random_state=1)
        # 重新格式化和标准化
        X_train = X_train.reshape(X_train.shape[0], 1, self.picHeight, self.picWidth) / 255.0
        X_test = X_test.reshape(X_test.shape[0], 1, self.picHeight, self.picWidth) / 255.0
        X_train = X_train.astype('float32')
        X_test = X_test.astype('float32')
        # 将labels转成 binary class matrices
        Y_train = np_utils.to_categorical(y_train, num_classes=clasNum)
        Y_test = np_utils.to_categorical(y_test, num_classes=clasNum)
        # 将格式化后的数据赋值给类的属性上
        self.X_train = X_train
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_test = Y_test
        self.num_classes = clasNum
# 人脸图片目录
dataset = DataSet('faces_4/')
model = MyCNN()
model.read_trainData(dataset)
model.build_model()
model.train_model()
model.evaluate_model()
model.save()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
266 7
|
1月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
1月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
225 0
|
1月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
344 0
|
11月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
940 55
|
12月前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
1002 5
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
540 3
|
机器学习/深度学习 人工智能 算法
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
鸟类识别系统。本系统采用Python作为主要开发语言,通过使用加利福利亚大学开源的200种鸟类图像作为数据集。使用TensorFlow搭建ResNet50卷积神经网络算法模型,然后进行模型的迭代训练,得到一个识别精度较高的模型,然后在保存为本地的H5格式文件。在使用Django开发Web网页端操作界面,实现用户上传一张鸟类图像,识别其名称。
537 12
鸟类识别系统Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+ResNet50算法模型+图像识别
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
492 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
440 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

推荐镜像

更多
下一篇
oss云网关配置