【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

简介: 【Python深度学习】Tensorflow+CNN进行人脸识别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

下面利用tensorflow平台进行人脸识别实战,使用的是Olivetti Faces人脸图像 部分数据集展示如下

程序训练过程如下

接下来训练CNN模型 可以看到训练进度和损失值变化

接下来展示人脸识别结果

程序会根据一张图片自动去图片集中寻找相似的人脸 如上图所示

部分代码如下 需要全部源码和数据集请点赞关注收藏后评论区留言私信~~~

from os import listdir
import numpy as np
from PIL import Image
import cv2
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense, Activation, Convolution2D, MaxPooling2D, Flatten
from sklearn.model_selection import train_test_split
from tensorflow.python.keras.utils import np_utils
# 读取人脸图片数据
def img2vector(fileNamestr):
    # 创建向量
    returnVect = np.zeros((57,47))    
    image = Image.open(fileNamestr).convert('L')    
    img = np.asarray(image).reshape(57,47)    
    return img
# 制作人脸数据集
def GetDataset(imgDataDir):   
    print('| Step1 |: Get dataset...')
    imgDataDir='faces_4/'
    FileDir = listdir(imgDataDir)
    m = len(FileDir)
    imgarray=[]
    hwLabels=[]
    hwdata=[]
    # 逐个读取图片文件
    for i in range(m):
        # 提取子目录
        className=i
        subdirName='faces_4/'+str(FileDir[i])+'/'
        fileNames = listdir(subdirName)                
        lenFiles=len(fileNames)
        # 提取文件名
        for j in range(lenFiles): 
            fileNamestr = subdirName+fileNames[j]
            hwLabels.append(className)    
            imgarray=img2vector(fileNamestr)
            hwdata.append(imgarray)
    hwdata = np.array(hwdata)
    return hwdata,hwLabels,6
# CNN模型类
class MyCNN(object):
    FILE_PATH = "face_recognition.h5"  # 模型存储/读取目录
    picHeight = 57  # 模型的人脸图片长47,宽57
    picWidth = 47  
    def __init__(self):
        self.model = None
    # 获取训练数据集
    def read_trainData(self, dataset):        
        self.dataset = dataset
    # 建立Sequential模型,并赋予参数
    def build_model(self):
        print('| Step2 |: Init CNN model...')
        self.model = Sequential()
        print('self.dataset.X_train.shape[1:]',self.dataset.X_train.shape[1:])
        self.model.add( Convolution2D( filters=32,
                                      kernel_size=(5, 5),
                                      padding='same',
                                      #dim_ordering='th',
                                      input_shape=self.dataset.X_train.shape[1:]))
        self.model.add(Activation('relu'))
        self.model.add( MaxPooling2D(pool_size=(2, 2),
                                     strides=(2, 2),
                                     padding='same' ) )
        self.model.add(Convolution2D(filters=64, 
                                     kernel_size=(5, 5), 
                                     padding='same') )
        self.model.add(Activation('relu'))
        self.model.add(MaxPooling2D(pool_size=(2, 2), 
                                    strides=(2, 2), 
                                    padding='same') )
        self.model.add(Flatten())
        self.model.add(Dense(512))
        self.model.add(Activation('relu'))
        self.model.add(Dense(self.dataset.num_classes))
        self.model.add(Activation('softmax'))
        self.model.summary()
    # 模型训练
    def train_model(self):
        print('| Step3 |: Train CNN model...')
        self.model.compile( optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
        # epochs:训练代次、batch_size:每次训练样本数
        self.model.fit(self.dataset.X_train, self.dataset.Y_train, epochs=10, batch_size=20)
    def evaluate_model(self):
        loss, accuracy = self.model.evaluate(self.dataset.X_test, self.dataset.Y_test)
        print('| Step4 |: Evaluate performance...')
        print('===================================')        
        print('Loss   Value   is :', loss)
        print('Accuracy Value is :', accuracy)
    def save(self, file_path=FILE_PATH):        
        print('| Step5 |: Save model...')
        self.model.save(file_path)
        print('Model ',file_path,'is succeesfuly saved.')
# 建立一个用于存储和格式化读取训练数据的类
class DataSet(object):
    def __init__(self, path):
        self.num_classes = None
        self.X_train = None
        self.X_test = None
        self.Y_train = None
        self.Y_test = None
        self.picWidth = 47
        self.picHeight = 57        
        self.makeDataSet(path)  # 在这个类初始化的过程中读取path下的训练数据
    def makeDataSet(self, path):
        # 根据指定路径读取出图片、标签和类别数
        imgs, labels, clasNum = GetDataset(path)
        # 将数据集打乱随机分组
        X_train, X_test, y_train, y_test = train_test_split(imgs, labels, test_size=0.2,random_state=1)
        # 重新格式化和标准化
        X_train = X_train.reshape(X_train.shape[0], 1, self.picHeight, self.picWidth) / 255.0
        X_test = X_test.reshape(X_test.shape[0], 1, self.picHeight, self.picWidth) / 255.0
        X_train = X_train.astype('float32')
        X_test = X_test.astype('float32')
        # 将labels转成 binary class matrices
        Y_train = np_utils.to_categorical(y_train, num_classes=clasNum)
        Y_test = np_utils.to_categorical(y_test, num_classes=clasNum)
        # 将格式化后的数据赋值给类的属性上
        self.X_train = X_train
        self.X_test = X_test
        self.Y_train = Y_train
        self.Y_test = Y_test
        self.num_classes = clasNum
# 人脸图片目录
dataset = DataSet('faces_4/')
model = MyCNN()
model.read_trainData(dataset)
model.build_model()
model.train_model()
model.evaluate_model()
model.save()

创作不易 觉得有帮助请点赞关注收藏~~~

目录
打赏
0
4
4
5
137
分享
相关文章
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
145 70
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
88 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
311 55
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
160 68
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
203 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
138 36
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
89 21
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
96 23

热门文章

最新文章