【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

简介: 【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

典型神经网络

在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产斗起到了促进的作用,如VGG ResNet Inception DenseNet等等,很多实际使用的卷积神经网络都是在它们的基础上进行改进的,下面主要讨论VGG卷积神经网络

VGG-16是共16层的卷积神经网络,有大约1.38亿个网络参数

网络结构图上图所示。

输入层之后  先是2个大小为3×3 卷积核数为64 步长为1 零填充的卷积层,此时数据维度大小为224×224×64 在水平方向被拉长了,然后是一个大小为2×2的最大池化层,将数据的维度降维112×112×64 再经过2个大小为3×3 卷积核数为128 步长为1 零填充的卷积层 再一次在水平方向上被拉长 变为112×112×128

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数为256 步长为1 零填充的卷积层 数据维度变为56×56×256

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数为512 步长为1 零填充的卷积层 数据维度变为28×28×512

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数位256 步长为1 零填充的卷积层 数据维度变为14×14×256

然后是一个大小为2×2的最大池化层 数据维度变为7×7×512

然后是1个Flatten层将数据拉平

最后是三个全连接层 节点数分别为4096 4096 1000

除最后一层全连接层采用Softmax激活函数外,所有卷积层和全连接层都采用ReLU激活函数

下面用预先训练好的模型来识别一副图片 并给出预测结果

如下图 这是我们准备识别的一张狗狗图片 目标是预测这只狗狗的类别

预测结果如下  可以图片为玩具贵宾犬的概率最大 约为0.6

部分代码如下

import tensorflow.keras.applications.vgg19 as vgg19
import tensorflow.keras.preprocessing.image as imagepre
# 加载预训练模型
model = vgg19.VGG19(weights='E:\\MLDatas\\vgg19_weights_tf_dim_ordering_tf_kernels.h5', include_top=True)
# 加载图片并转换为合适的数据形式
image = imagepre.load_img('116.jpg', target_size=(224, 224))
imagedata = imagepr
imagedata = vgg19.preprocess_input(imagedata)
prediction = model.predict(imagedata) # 分类预测
results = vgg19.decode_predictions(prediction, top=3)
print(results)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
26天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
235 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
2月前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
193 73
|
2月前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
97 21
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
82 2
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
116 10
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
466 7
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
139 1
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新

热门文章

最新文章