【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

简介: 【Python机器学习】卷积神经网络Vgg19模型预测动物类别实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

典型神经网络

在深度学习的发展过程中,出现了很多经典的卷积神经网络,它们对深度学习的学术研究和工业生产斗起到了促进的作用,如VGG ResNet Inception DenseNet等等,很多实际使用的卷积神经网络都是在它们的基础上进行改进的,下面主要讨论VGG卷积神经网络

VGG-16是共16层的卷积神经网络,有大约1.38亿个网络参数

网络结构图上图所示。

输入层之后  先是2个大小为3×3 卷积核数为64 步长为1 零填充的卷积层,此时数据维度大小为224×224×64 在水平方向被拉长了,然后是一个大小为2×2的最大池化层,将数据的维度降维112×112×64 再经过2个大小为3×3 卷积核数为128 步长为1 零填充的卷积层 再一次在水平方向上被拉长 变为112×112×128

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数为256 步长为1 零填充的卷积层 数据维度变为56×56×256

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数为512 步长为1 零填充的卷积层 数据维度变为28×28×512

然后是一个大小为2×2的最大池化层 和3个大小为3×3 卷积核数位256 步长为1 零填充的卷积层 数据维度变为14×14×256

然后是一个大小为2×2的最大池化层 数据维度变为7×7×512

然后是1个Flatten层将数据拉平

最后是三个全连接层 节点数分别为4096 4096 1000

除最后一层全连接层采用Softmax激活函数外,所有卷积层和全连接层都采用ReLU激活函数

下面用预先训练好的模型来识别一副图片 并给出预测结果

如下图 这是我们准备识别的一张狗狗图片 目标是预测这只狗狗的类别

预测结果如下  可以图片为玩具贵宾犬的概率最大 约为0.6

部分代码如下

import tensorflow.keras.applications.vgg19 as vgg19
import tensorflow.keras.preprocessing.image as imagepre
# 加载预训练模型
model = vgg19.VGG19(weights='E:\\MLDatas\\vgg19_weights_tf_dim_ordering_tf_kernels.h5', include_top=True)
# 加载图片并转换为合适的数据形式
image = imagepre.load_img('116.jpg', target_size=(224, 224))
imagedata = imagepr
imagedata = vgg19.preprocess_input(imagedata)
prediction = model.predict(imagedata) # 分类预测
results = vgg19.decode_predictions(prediction, top=3)
print(results)

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
27天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
85 4
|
27天前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
11天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
1月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
60 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
20天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
37 12
|
27天前
|
机器学习/深度学习 Python
机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况
本文介绍了机器学习中评估模型性能的重要工具——混淆矩阵和ROC曲线。混淆矩阵通过真正例、假正例等指标展示模型预测情况,而ROC曲线则通过假正率和真正率评估二分类模型性能。文章还提供了Python中的具体实现示例,展示了如何计算和使用这两种工具来评估模型。
46 8
|
27天前
|
机器学习/深度学习 Python
机器学习中模型选择和优化的关键技术——交叉验证与网格搜索
本文深入探讨了机器学习中模型选择和优化的关键技术——交叉验证与网格搜索。介绍了K折交叉验证、留一交叉验证等方法,以及网格搜索的原理和步骤,展示了如何结合两者在Python中实现模型参数的优化,并强调了使用时需注意的计算成本、过拟合风险等问题。
47 6
|
29天前
|
机器学习/深度学习 数据采集 算法
从零到一:构建高效机器学习模型的旅程####
在探索技术深度与广度的征途中,我深刻体会到技术创新既在于理论的飞跃,更在于实践的积累。本文将通过一个具体案例,分享我在构建高效机器学习模型过程中的实战经验,包括数据预处理、特征工程、模型选择与优化等关键环节,旨在为读者提供一个从零开始构建并优化机器学习模型的实用指南。 ####
|
1月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
1月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
43 0