【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现

简介: 【复现】尝试使用numpy对卷积神经网络中各经典结构进行改写复现

前言

  numpy作为Python中最常用的科学计算库之一,也被广泛应用于卷积神经网络中的各个组件。本篇博客将介绍如何使用numpy完成卷积神经网络中的各个组件,包括卷积层、池化层、全连接层等,帮助读者更好地理解卷积神经网络的实现原理,同时也能够更加熟练地使用numpy进行深度学习相关的编程。

卷积层

  使用numpy写出卷积层函数需要考虑多个方面,包括输入数据的格式、卷积核的设置、卷积的步长和填充、矩阵乘法的实现以及梯度的计算等

  1. 输入数据的维度和格式:卷积层的输入数据通常是一个四维数组,分别表示样本数、通道数、高度和宽度。因此,在编写卷积层函数时,需要考虑输入数据的维度和格式,以保证函数能够正确地处理数据。
  2. 卷积核的维度和格式:卷积核也是一个四维数组,分别表示输入通道数、输出通道数、卷积核高度和卷积核宽度。在编写卷积层函数时,需要考虑卷积核的维度和格式,以保证函数能够正确地卷积输入数据。
  3. 卷积的步长和填充:卷积层通常会用步长和填充来控制输出数据的尺寸。在编写卷积层函数时,需要考虑步长和填充的设置,以保证函数能够正确地卷积输入数据并输出正确的尺寸。
  4. 矩阵乘法的实现:卷积操作可以看作是一种矩阵乘法操作,因此在编写卷积层函数时,需要考虑如何使用numpy实现高效的矩阵乘法操作,以提高函数的运行效率。
  5. 梯度的计算:在卷积神经网络中,梯度的计算是非常重要的,它可以用来更新卷积核和输入数据的参数。在编写卷积层函数时,需要考虑如何计算梯度,并将梯度传递给前一层的神经元,以实现反向传播算法。

参数说明:

x: 输入数据,shape为(batch_size, in_channels, height, width)

w: 卷积核,shape为(out_channels, in_channels, kernel_height, kernel_width)

b: 偏置,shape为(out_channels,)

stride: 步长,默认为1

padding: 填充,默认为0\

out: 卷积结果,shape为(batch_size, out_channels, out_height, out_width)

ini

复制代码

import numpy as np
    def conv2d(x, w, b, stride=1, padding=0):
        batch_size, in_channels, height, width = x.shape
        out_channels, _, kernel_height, kernel_width = w.shape
        # 计算输出特征图的尺寸
        out_height = (height + 2 * padding - kernel_height) // stride + 1
        out_width = (width + 2 * padding - kernel_width) // stride + 1
        # 对输入数据进行填充
        x_pad = np.pad(x, ((0, 0), (0, 0), (padding, padding), (padding, padding)), mode='constant')
        # 初始化输出特征图
        out = np.zeros((batch_size, out_channels, out_height, out_width))
        # 进行卷积操作
        for i in range(out_height):
            for j in range(out_width):
                for k in range(out_channels):
                    out[:, k, i, j] = np.sum(x_pad[:, :, i*stride:i*stride+kernel_height, j*stride:j*stride+kernel_width] * w[k, :, :, :], axis=(1, 2, 3)) + b[k]
        return out

使用示例

ini

复制代码

# 构造输入数据
x = np.random.randn(1, 3, 640, 640)
# 构造卷积核和偏置
w = np.random.randn(64, 3, 3, 3)
b = np.random.randn(64)
# 进行卷积操作
out = conv2d(x, w, b, stride=1, padding=1)
# 打印输出特征图的尺寸
print(out.shape)

池化层

  使用numpy写出池化层函数需要考虑多个方面,包括输入数据的格式、池化的类型和大小、池化的步长和填充、矩阵乘法的实现以及梯度的计算。

  1. 输入数据的维度和格式:池化层的输入数据通常是一个四维数组,分别表示样本数、通道数、高度和宽度。因此,在编写池化层函数时,需要考虑输入数据的维度和格式,以保证函数能够正确地处理数据。
  2. 池化的类型和大小:池化层通常有两种类型,即最大池化和平均池化,同时还需要设置池化的大小。在编写池化层函数时,需要考虑池化的类型和大小的设置,以保证函数能够正确地池化输入数据。
  3. 池化的步长和填充:池化层通常会用步长和填充来控制输出数据的尺寸。在编写池化层函数时,需要考虑步长和填充的设置,以保证函数能够正确地池化输入数据并输出正确的尺寸。
  4. 矩阵乘法的实现:池化操作可以看作是一种矩阵乘法操作,因此在编写池化层函数时,需要考虑如何使用numpy实现高效的矩阵乘法操作,以提高函数的运行效率。
  5. 梯度的计算:在卷积神经网络中,梯度的计算是非常重要的,它可以用来更新输入数据的参数。在编写池化层函数时,需要考虑如何计算梯度,并将梯度传递给前一层的神经元,以实现反向传播算法。

ini

复制代码

import numpy as np
    def max_pooling(input_data, pool_size, strides):
        batch_size, in_channels, in_height, in_width = input_data.shape
        pool_height, pool_width = pool_size
        stride_height, stride_width = strides
        out_height = int((in_height - pool_height) / stride_height + 1)
        out_width = int((in_width - pool_width) / stride_width + 1)
        output_data = np.zeros((batch_size, in_channels, out_height, out_width))
        for i in range(out_height):
            for j in range(out_width):
                output_data[:, :, i, j] = np.max(
                    input_data[:, :, i * stride_height:i * stride_height + pool_height,
                               j * stride_width:j * stride_width + pool_width], axis=(2, 3))
        return output_data

scss

复制代码

input_data = np.random.randn(1, 3, 640, 640)
    pool_size = (2, 2)
    strides = (2, 2)
    output_data = max_pooling(input_data, pool_size, strides)
    print("input_data:\n", input_data.shape)
    print("output_data:\n", output_data.shape)

image.png

  这个函数接受三个参数:输入数据、池化窗口大小和步幅。 输入数据的形状为(batch_size, in_channels, in_height, in_width),其中batch_size表示批次大小,in_channels表示输入数据的通道数,in_heightin_width分别表示输入数据的高度和宽度。 池化窗口大小为(pool_height, pool_width),步幅为(stride_height, stride_width)。这个函数通过双重循环遍历每个池化窗口,然后在这个窗口内取最大值作为输出值。

Dropout层

Dropout层具有一定的随机性:

Dropout层的主要作用是随机删除一部分神经元,因此在实现时需要使用随机数生成器产生一个0-1之间的随机数矩阵,然后根据设定的概率阈值(如0.5)来判断哪些神经元需要被删除。

训练和测试模式:

在训练和测试两个阶段,Dropout层的行为是不同的。在训练阶段,Dropout层会删除一部分神经元;而在测试阶段,Dropout层不会删除神经元,而是将所有神经元的权重乘以概率阈值(如0.5),以保持期望输出不变。因此,在实现时需要添加一个参数来表示当前是训练还是测试模式,并针对不同模式进行不同的计算。

归一化:

在删除一部分神经元后,Dropout层会使得剩余神经元的输出值变大,因此需要对输出值进行归一化。一种简单的方法是将输出值除以概率阈值(如0.5),以保持期望输出不变。

反向传播:

在反向传播过程中,Dropout层需要将输出值乘以一个掩码矩阵(即随机删除的神经元对应位置为0,未删除的神经元对应位置为1),以保留未删除神经元的梯度信息。因此,在实现时需要注意掩码矩阵的生成和使用。

参数管理:

Dropout层没有可训练参数,因此在实现时不需要考虑参数初始化和更新的问题。

ini

复制代码

import numpy as np
    def dropout(x, p):
        # 其中,x是输入的矩阵,p是保留概率
        mask = np.random.binomial(1, 1-p, size=x.shape) / (1-p)
        return x * mask
    # 生成一个的矩阵
    x = np.random.rand(1, 3, 640, 640)
    # 使用dropout函数保留概率为0.5
    y = dropout(x, 0.5)

scss

复制代码

# 输出x和y的值
    print("x:")
    print(x.shape)
    print("y:")
    print(y.shape)

image.png

全连接层

输入输出维度:

全连接层的输入和输出都是二维矩阵,其中输入矩阵的第一维表示样本数,第二维表示特征数;输出矩阵的第一维表示样本数,第二维表示输出节点数。在实现时需要确保输入输出矩阵的维度正确。

权重和偏置:

全连接层的核心是权重矩阵和偏置向量。在实现时需要使用随机数生成器初始化权重矩阵和偏置向量,并在反向传播过程中更新它们的值。

前向传播:

全连接层的前向传播过程是将输入矩阵和权重矩阵相乘,再加上偏置向量,最后通过激活函数得到输出矩阵。在实现时需要注意矩阵乘法的维度匹配和激活函数的选择。

反向传播:

全连接层的反向传播过程是根据损失函数对权重矩阵和偏置向量进行梯度更新。在实现时需要注意梯度的计算和矩阵乘法的转置。同时,为了避免梯度消失或爆炸,可以使用梯度裁剪等方法进行优化。

批量处理:

在实际使用中,一般会采用批量处理的方式进行训练。因此,在实现时需要注意批量大小的设置,以及在前向传播和反向传播过程中对批量数据进行处理。

参数管理:

全连接层的参数包括权重矩阵和偏置向量,需要进行初始化和更新。在实现时需要注意参数的维度和存储方式。

python

复制代码

import numpy as np
    class FullyConnectedLayer:
        def __init__(self, input_size, output_size):
            self.W = np.random.randn(input_size, output_size) * 0.01
            self.b = np.zeros((1, output_size))
            self.input = None
        def forward(self, x):
            self.input = x
            output = np.dot(x, self.W) + self.b
            return output
        def backward(self, grad_output, learning_rate):
            grad_input = np.dot(grad_output, self.W.T)
            grad_W = np.dot(self.input.T, grad_output)
            grad_b = np.sum(grad_output, axis=0, keepdims=True)
            self.W -= learning_rate * grad_W
            self.b -= learning_rate * grad_b
            return grad_input

ini

复制代码

# 生成随机输入
x = np.random.randn(10, 5)
# 创建全连接层
fc_layer = FullyConnectedLayer(5, 3)
# 进行前向传播
output = fc_layer.forward(x)
# 打印输出的形状
print("output.shape:", output.shape)
# 进行反向传播
grad_output = np.random.randn(10, 3)
grad_input = fc_layer.backward(grad_output, 0.01)
# 打印反向传播的输出形状
print("grad_input.shape", grad_input.shape)

image.png

BN层

  1. 计算均值和方差:BN层的主要作用是对每个特征进行均值和方差归一化,以使得每个特征在不同样本中具有相似的分布。在实现时需要计算每个特征的均值和方差,可以使用numpy的mean和var函数进行计算。
  2. 归一化:根据计算得到的均值和方差,可以对每个特征进行归一化处理,以使得每个特征的均值为0,方差为1。在实现时需要注意除以方差时需要加上一个很小的数(如1e-8)以避免除以0的情况。
  3. 缩放和平移:为了保留每个特征的表达能力,BN层还需要对归一化后的结果进行缩放和平移。具体来说,对于每个特征,需要学习一个缩放因子和一个平移因子,以使得归一化后的结果可以任意平移和缩放。在实现时需要使用随机数生成器初始化缩放和平移因子,并在反向传播过程中更新它们的值。
  4. 反向传播:在反向传播过程中,BN层需要计算梯度,并根据梯度更新缩放和平移因子。在实现时需要注意梯度的计算和矩阵乘法的转置。同时,为了避免梯度消失或爆炸,可以使用梯度裁剪等方法进行优化。
  5. 训练和测试模式:在训练和测试两个阶段,BN层的行为是不同的。在训练阶段,BN层会根据当前批量数据计算均值和方差,并使用它们对每个特征进行归一化;而在测试阶段,BN层需要使用之前计算得到的整个数据集的均值和方差对每个特征进行归一化。因此,在实现时需要添加一个参数来表示当前是训练还是测试模式,并针对不同模式进行不同的计算。
  6. 参数管理:BN层的参数包括缩放因子和平移因子,需要进行初始化和更新。在实现时需要注意参数的维度和存储方式。

ini

复制代码

import numpy as np
    import matplotlib.pyplot as plt
    def batch_norm(x, gamma, beta, eps=1e-5):
        N, C, H, W = x.shape
        mu = np.mean(x, axis=(0, 2, 3), keepdims=True)
        var = np.var(x, axis=(0, 2, 3), keepdims=True)
        x_norm = (x - mu) / np.sqrt(var + eps)
        out = gamma.reshape(1, C, 1, 1) * x_norm + beta.reshape(1, C, 1, 1)
        cache = (x, x_norm, mu, var, gamma, beta, eps)
        return out, cache

ini

复制代码

# 随机生成一个四维数据集
    np.random.seed(0)
    x = np.random.randn(1, 3, 640, 640)
    # 对数据进行BN层处理
    gamma = np.ones(3)
    beta = np.zeros(3)
    x_norm, _ = batch_norm(x, gamma, beta)
    # 绘制归一化前后的数据分布图
    fig, axs = plt.subplots(2, 1, figsize=(8, 6))
    axs[0].hist(np.sum(x, axis=(1, 2, 3)), bins=50)
    axs[0].set_title("Before BN")
    axs[1].hist(np.sum(x_norm, axis=(1, 2, 3)), bins=50)
    axs[1].set_title("After BN")
    plt.show()

image.png


相关文章
|
14天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
17天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
18 2
|
17天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
24 1
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
10天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
16天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
18天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。