Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)


CPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        x = self.fc(x)
        return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.625
[1,   600] loss: 0.181
[1,   900] loss: 0.135
accuracy on test set: 96 % 
[2,   300] loss: 0.111
[2,   600] loss: 0.096
[2,   900] loss: 0.088
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.080
[3,   900] loss: 0.073
accuracy on test set: 98 % 
[4,   300] loss: 0.067
[4,   600] loss: 0.061
[4,   900] loss: 0.067
accuracy on test set: 98 % 
[5,   300] loss: 0.055
[5,   600] loss: 0.058
[5,   900] loss: 0.058
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.048
[6,   900] loss: 0.053
accuracy on test set: 98 % 
[7,   300] loss: 0.044
[7,   600] loss: 0.050
[7,   900] loss: 0.045
accuracy on test set: 98 % 
[8,   300] loss: 0.041
[8,   600] loss: 0.042
[8,   900] loss: 0.045
accuracy on test set: 98 % 
[9,   300] loss: 0.037
[9,   600] loss: 0.042
[9,   900] loss: 0.041
accuracy on test set: 98 % 
[10,   300] loss: 0.036
[10,   600] loss: 0.036
[10,   900] loss: 0.038
accuracy on test set: 98 %

GPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        # print("x.shape",x.shape)
        x = self.fc(x)
        return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
    return correct / total
if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
    plt.plot(epoch_list, acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
[1,   300] loss: 0.698
[1,   600] loss: 0.198
[1,   900] loss: 0.145
accuracy on test set: 96 % 
[2,   300] loss: 0.107
[2,   600] loss: 0.098
[2,   900] loss: 0.089
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.070
[3,   900] loss: 0.072
accuracy on test set: 98 % 
[4,   300] loss: 0.066
[4,   600] loss: 0.059
[4,   900] loss: 0.057
accuracy on test set: 98 % 
[5,   300] loss: 0.048
[5,   600] loss: 0.055
[5,   900] loss: 0.056
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.044
[6,   900] loss: 0.047
accuracy on test set: 98 % 
[7,   300] loss: 0.042
[7,   600] loss: 0.044
[7,   900] loss: 0.043
accuracy on test set: 98 % 
[8,   300] loss: 0.042
[8,   600] loss: 0.036
[8,   900] loss: 0.042
accuracy on test set: 98 % 
[9,   300] loss: 0.035
[9,   600] loss: 0.038
[9,   900] loss: 0.037
accuracy on test set: 98 % 
[10,   300] loss: 0.035
[10,   600] loss: 0.036
[10,   900] loss: 0.032
accuracy on test set: 98 %

相关说明:

1. 卷积神经网络的主要组成

卷积神经网络(Convolutional Neural Networks, CNN)

  • 卷积层(Convolutional layer),卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
  • 池化层(Pooling),它实际上一种形式的向下采样。有多种不同形式的非线性池化函数,而其中最大池化(Max pooling)和平均采样是最为常见的。(Pooling层相当于把一张分辨率较高的图片转化为分辨率较低的图片;pooling层可进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中参数的目的。)
  • 全连接层(Full connection), 与普通神经网络一样的连接方式,一般都在最后几层

直接只进行全连接神经网络可能会导致丧失样本的一些原有的空间结构的信息

2. 卷积计算过程示例:

卷积运算:

简化成下图形式:

3. N通道输入 到 M通道输出:

(卷积核的channel大小(通道数)为n,卷积核的数量为m)

简化成下图形式:

卷积核可以拼为4维的张量

举例:5通道输入 到 10通道输出:

4. 关于Padding:

  • padding:控制应用于输入的填充量。它可以是一个字符串 {‘valid’, ‘same’} 或一个整数元组,给出在双方应用的隐式填充量。( controls the amount of padding applied to the input. It can be either a string {‘valid’, ‘same’} or a tuple of ints giving the amount of implicit padding applied on both sides.)

卷积核为3 * 3,外围填充1圈(3/2=1);

卷积核为5 * 5,外围填充2圈(5/2=2);

上述计算过程的代码:

5. 关于stride:

  • stride :控制互相关、单个数字或元组的步幅。(controls the stride for the cross-correlation, a single number or a tuple.)

可以有效降低图像的高度和宽度

6. 关于下采样

下采样:减少数据的数据量,减低运算的需求

用的比较多的:最大池化层(选取以下四个方格中每个方格的最大值)

以上过程的代码:

注:当kernel_size被设成2的时候,默认的步长stride也会被设置成2;

7. 一个简单的卷积神经网络的过程:

具体的流程:

8. 怎样使用GPU来运算:

相关思考:torch.device(‘cuda‘) 与 torch.device(‘cuda:0‘) 的区别简析

程度运行时使用任务管理器查看是否正在使用GPU:

9. 程序运行结果:

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
打赏
0
0
0
0
16
分享
相关文章
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
1493 0
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
288 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
【Tensorflow+Keras】keras实现条件生成对抗网络DCGAN--以Minis和fashion_mnist数据集为例
如何使用TensorFlow和Keras实现条件生成对抗网络(CGAN)并以MNIST和Fashion MNIST数据集为例进行演示。
100 3
网络安全公开数据集Maple-IDS,恶意流量检测数据集开放使用!
【8月更文挑战第29天】Maple-IDS 是东北林业大学网络安全实验室发布的网络入侵检测评估数据集,旨在提升异常基础入侵检测和预防系统的性能与可靠性。该数据集包含多种最新攻击类型,如 DDoS 和 N-day 漏洞,覆盖多种服务和网络行为,兼容 CIC-IDS 格式,便于直接使用或生成 csv 文件,适用于多种现代协议。
410 0
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
103 17
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等