Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)

简介: Pytorch实现手写数字识别 | MNIST数据集(CNN卷积神经网络)


CPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        x = self.fc(x)
        return x
model = Net()
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
[1,   300] loss: 0.625
[1,   600] loss: 0.181
[1,   900] loss: 0.135
accuracy on test set: 96 % 
[2,   300] loss: 0.111
[2,   600] loss: 0.096
[2,   900] loss: 0.088
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.080
[3,   900] loss: 0.073
accuracy on test set: 98 % 
[4,   300] loss: 0.067
[4,   600] loss: 0.061
[4,   900] loss: 0.067
accuracy on test set: 98 % 
[5,   300] loss: 0.055
[5,   600] loss: 0.058
[5,   900] loss: 0.058
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.048
[6,   900] loss: 0.053
accuracy on test set: 98 % 
[7,   300] loss: 0.044
[7,   600] loss: 0.050
[7,   900] loss: 0.045
accuracy on test set: 98 % 
[8,   300] loss: 0.041
[8,   600] loss: 0.042
[8,   900] loss: 0.045
accuracy on test set: 98 % 
[9,   300] loss: 0.037
[9,   600] loss: 0.042
[9,   900] loss: 0.041
accuracy on test set: 98 % 
[10,   300] loss: 0.036
[10,   600] loss: 0.036
[10,   900] loss: 0.038
accuracy on test set: 98 %

GPU版本代码

未下载MNIST数据集的需要将代码中的download=False改为download=True

import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
# prepare dataset
batch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_dataset = datasets.MNIST(root='./dataset/mnist/', train=True, download=False, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='./dataset/mnist/', train=False, download=False, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# design model using class
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # flatten data from (n,1,28,28) to (n, 784)
        batch_size = x.size(0)
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)  # -1 此处自动算出的是320
        # print("x.shape",x.shape)
        x = self.fc(x)
        return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# training cycle forward, backward, update
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
    print('accuracy on test set: %d %% ' % (100 * correct / total))
    return correct / total
if __name__ == '__main__':
    epoch_list = []
    acc_list = []
    for epoch in range(10):
        train(epoch)
        acc = test()
        epoch_list.append(epoch)
        acc_list.append(acc)
    plt.plot(epoch_list, acc_list)
    plt.ylabel('accuracy')
    plt.xlabel('epoch')
    plt.show()
[1,   300] loss: 0.698
[1,   600] loss: 0.198
[1,   900] loss: 0.145
accuracy on test set: 96 % 
[2,   300] loss: 0.107
[2,   600] loss: 0.098
[2,   900] loss: 0.089
accuracy on test set: 97 % 
[3,   300] loss: 0.078
[3,   600] loss: 0.070
[3,   900] loss: 0.072
accuracy on test set: 98 % 
[4,   300] loss: 0.066
[4,   600] loss: 0.059
[4,   900] loss: 0.057
accuracy on test set: 98 % 
[5,   300] loss: 0.048
[5,   600] loss: 0.055
[5,   900] loss: 0.056
accuracy on test set: 98 % 
[6,   300] loss: 0.052
[6,   600] loss: 0.044
[6,   900] loss: 0.047
accuracy on test set: 98 % 
[7,   300] loss: 0.042
[7,   600] loss: 0.044
[7,   900] loss: 0.043
accuracy on test set: 98 % 
[8,   300] loss: 0.042
[8,   600] loss: 0.036
[8,   900] loss: 0.042
accuracy on test set: 98 % 
[9,   300] loss: 0.035
[9,   600] loss: 0.038
[9,   900] loss: 0.037
accuracy on test set: 98 % 
[10,   300] loss: 0.035
[10,   600] loss: 0.036
[10,   900] loss: 0.032
accuracy on test set: 98 %

相关说明:

1. 卷积神经网络的主要组成

卷积神经网络(Convolutional Neural Networks, CNN)

  • 卷积层(Convolutional layer),卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
  • 池化层(Pooling),它实际上一种形式的向下采样。有多种不同形式的非线性池化函数,而其中最大池化(Max pooling)和平均采样是最为常见的。(Pooling层相当于把一张分辨率较高的图片转化为分辨率较低的图片;pooling层可进一步缩小最后全连接层中节点的个数,从而达到减少整个神经网络中参数的目的。)
  • 全连接层(Full connection), 与普通神经网络一样的连接方式,一般都在最后几层

直接只进行全连接神经网络可能会导致丧失样本的一些原有的空间结构的信息

2. 卷积计算过程示例:

卷积运算:

简化成下图形式:

3. N通道输入 到 M通道输出:

(卷积核的channel大小(通道数)为n,卷积核的数量为m)

简化成下图形式:

卷积核可以拼为4维的张量

举例:5通道输入 到 10通道输出:

4. 关于Padding:

  • padding:控制应用于输入的填充量。它可以是一个字符串 {‘valid’, ‘same’} 或一个整数元组,给出在双方应用的隐式填充量。( controls the amount of padding applied to the input. It can be either a string {‘valid’, ‘same’} or a tuple of ints giving the amount of implicit padding applied on both sides.)

卷积核为3 * 3,外围填充1圈(3/2=1);

卷积核为5 * 5,外围填充2圈(5/2=2);

上述计算过程的代码:

5. 关于stride:

  • stride :控制互相关、单个数字或元组的步幅。(controls the stride for the cross-correlation, a single number or a tuple.)

可以有效降低图像的高度和宽度

6. 关于下采样

下采样:减少数据的数据量,减低运算的需求

用的比较多的:最大池化层(选取以下四个方格中每个方格的最大值)

以上过程的代码:

注:当kernel_size被设成2的时候,默认的步长stride也会被设置成2;

7. 一个简单的卷积神经网络的过程:

具体的流程:

8. 怎样使用GPU来运算:

相关思考:torch.device(‘cuda‘) 与 torch.device(‘cuda:0‘) 的区别简析

程度运行时使用任务管理器查看是否正在使用GPU:

9. 程序运行结果:

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
相关文章
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
5月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
534 11
|
5月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
155 1
|
8月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
5月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
249 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
868 0
|
5月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
395 0
|
7月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
418 7
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。
|
9月前
|
机器学习/深度学习 搜索推荐 PyTorch
基于昇腾用PyTorch实现CTR模型DIN(Deep interest Netwok)网络
本文详细讲解了如何在昇腾平台上使用PyTorch训练推荐系统中的经典模型DIN(Deep Interest Network)。主要内容包括:DIN网络的创新点与架构剖析、Activation Unit和Attention模块的实现、Amazon-book数据集的介绍与预处理、模型训练过程定义及性能评估。通过实战演示,利用Amazon-book数据集训练DIN模型,最终评估其点击率预测性能。文中还提供了代码示例,帮助读者更好地理解每个步骤的实现细节。

热门文章

最新文章