输出结果
代码设计
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
x_data = np.random.rand(100).astype(np.float32)
y_data = x_data*0.1 + 0.3
Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
y = Weights*x_data + biases
loss = tf.reduce_mean(tf.square(y-y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
### create tensorflow structure end ###
sess = tf.Session()
sess.run(init)
for step in range(201):
sess.run(train)
if step % 10 == 0:
print(step, sess.run(Weights), sess.run(biases))