鹰角网络:EMR Serverless Spark 在《明日方舟》游戏业务的应用

本文涉及的产品
EMR Serverless Spark 免费试用,1000 CU*H 有效期3个月
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 鹰角网络为应对游戏业务高频活动带来的数据潮汐、资源弹性及稳定性需求,采用阿里云 EMR Serverless Spark 替代原有架构。迁移后实现研发效率提升,支持业务快速发展、计算效率提升,增强SLA保障,稳定性提升,降低运维成本,并支撑全球化数据架构部署。

作者:鹰角网络高级大数据研发 茅旭辉


背景介绍

鹰角网络是一家年轻且富有创新的游戏公司,致力于开发充满挑战性和艺术价值的游戏产品。公司目前涵盖了游戏开发、运营和发行的全生命周期业务。随着业务的扩展,鹰角网络从单一爆款游戏发展到多赛道、多平台、全球化的战略布局,在数据业务上进行了全面的优化和升级。


从业务上看,以《明日方舟》为代表的长线运营游戏,具有相对高频的活动周期和丰富多样的活动玩法,反映到数据层面则是数据需求量高、潮汐现象显著,需要高效的开发模式支持和灵活的弹性资源供给。我们的数据支持不仅仅有传统的 BI 报表形式,更是深入集成到游戏玩法和运营层面透出,对于引擎稳定性有强烈诉求。另外,内部面向业务的分析跑数场景,存在基于 Thrift Server 等能力扩展支持的诉求。



为什么选择阿里云 EMR Serverless Spark

原有架构痛点

在业务发展过程中,原有架构逐渐暴露出了如下痛点:

  1. 产品功能上,缺少外部 Catalog 支持和 DolphinScheduler 等流行调度引擎集成支持。
  2. 引擎性能上,社区兼容性相对较低产生稳定性问题,且不支持 Remote Shuffle Service 服务导致性能问题。
  3. 服务保障上,技术支持力度较弱,在用户痛点发掘和产品迭代方面做得不足。



EMR Serverless Spark 优势

我们期待的云原生大数据架构是基于开放生态、资源弹性、可插拔集成理念下的半托管+全托管灵活组合架构,而 EMR Serverless Spark 正是完美匹配这套理念的重要一环。它是一款兼容开源 Spark 的高性能 Lakehouse 产品,为用户提供任务开发、调试、发布、调度和运维等全方位的产品化服务,显著简化了大数据计算的工作流程,使用户能更专注于数据分析和价值提炼,具备如下核心优势:

  • 丰富的功能支持
  • 元数据管理:支持管理 Paimon Catalog,并且支持对接外部 Hive MetaStore 元数据服务。
  • 调度引擎支持:提供了 Airflow、DolphinScheduler 等多种调度引擎无缝集成。
  • 资源管理模型:提供了易于理解的三级资源管理模型(工作空间、队列、会话)和细粒度的队列资源监控。
  • 生态能力:提供了 Spark Thrift Server、Notebook 等多种生态功能,便于业务灵活使用。


  • 优秀的引擎性能
  • Shuffle 性能:内置 Celeborn 服务,解决了大 Shuffle 场景下的磁盘限制问题。
  • SQL 执行引擎:内置的高性能 Fusion 引擎,为计算加速提供支持。
  • 稳定性:100%保持社区兼容性,并积极修复潜在 Bug。
  • 版本支持:持续追踪 Spark 社区版本,提供多版本迭代支持和完整的引擎特性使用。


  • 完善的服务保障
  • 问题响应:提供了专业的技术咨询和解决方案支持,增强合作信任度。
  • 产品规划:提供了清晰的产品迭代规划,持续解决用户痛点场景。



技术方案设计

image.png

数据采集

在数据采集和管理方面,我们采用了自研的埋点工具来获取和管理日志数据,并利用 Flink CDC 技术同步数据库表。这确保了数据的实时性和准确性,为后续的数据分析提供了可靠的基础。


离线调度

在离线调度方面,我们实施了两种策略一种引擎,一是使用 Airflow 服务支持有代码基础的研发用户,同时为普通数据分析师和数仓研发提供了 DolphinScheduler 服务,这两种调度系统都实现了对 EMR Serverless Spark 的对接,满足平台服务的灵活性。

我们选择了 Serverless Spark 作为其离线计算引擎,相比于之前的架构,Serverless Spark 显著减少了运维成本,并提高了系统的稳定性和可靠性。其 Celeborn 能力解决了大 Shuffle 任务操作中的磁盘限制问题,同时任务状态与调度工具实现了强一致性,无需二次确认,进一步优化了数据处理流程。


在线计算

为了支持在线计算和数据应用,我们使用 StarRocks 进行在线计算,高质量的指标数据通过智能 BI 系统实现可视化实时展示,并提供了清晰的业务洞察。同时,数据还被整合到经营分析平台,为其业务发展提供了统一支持。数据也应用于算法团队进行业务探索与数据科学分析。


典型应用场景

DolphinScheduler 集成作业开发

image.png

Serverless Spark 在 DolphinScheduler 中集成了专用的作业类型ALIYUN_SERVERLESS_SPARK,支持 SQL、SQL File、Jar 包等多种作业形式。我们在本地 Git 仓库开发作业,通过 CI 流程部署到 OSS 存储路径下,并使用 SQL File/Jar 作业类型,提交相应的作业文件到 Serverless Spark 执行计算。

image.png


Thrift Server 支持 Ad-Hoc

Serverless Spark 内置了 Thrift Server 服务,支持通过 JDBC 的方式连接 Spark执行 SQL 查询,提供了便捷将 Spark 环境与其他数据分析工具集成的途径。目前Spark Thrift Server 能力在内部主要支持以下两类场景:

  • 以产品运营人员为主的 Ad-Hoc 分析场景,期望通过 Spark 引擎执行 SQL 查询,但希望忽略资源配置等非必要信息,可以直接使用 DolphinScheduler 内置的 SQL 作业类型 + Spark 数据源进行简单查询。同时 Spark Thrift Server 会话支持动态资源配置,可以自适应支持 Ad-Hoc 查询所需资源。
  • 以数仓研发为主的数据结果返回场景,能够拿到 SQL 查询结果并传递给下游作业使用。

image.png


迁移后的收益

通过这一系列技术栈的优化,我们不仅优化了数据管理和分析流程,还有效支持了公司的全球化战略和业务扩展,目前我们已经在海外基于 EMR Serverless Spark 搭建类似数据架构。

EMR Serverless Spark 主要给我们带来了以下收益:

  1. 研发效率提升,支持业务快速发展
    迁移到 EMR Serverless Spark + DolphinScheduler 架构后,使用 Spark SQL 会话功能快速开发验证+DolphinScheduler 生产调度的模式,研发效率显著提升,多次保障了关键活动节点的数据产出支持。


  1. 计算效率提升,增强SLA保障
    在以用户宽表为代表的指标计算场景下,单作业计算用时从30分钟降低到15分钟,计算加速50%;核心 SLA 链路整体产出时间缩短1.5小时,大幅增强了 SLA 保障能力。


  1. 稳定性提升,降低运维压力
    EMR Serverless Spark 的多版本管理能力为用户提供了灵活的选择空间,支持快速升级至最新优化版本,确保用户始终享有最稳定的运行体验。



总结及后续期待

经过了业务实践证明,EMR Serverless Spark 在大数据研发下 Spark 生态领域的经典业务场景具备了足够的优势。对于未来,我们期望它能继续以开放原则发展 Lakehouse 生态能力,例如统一 Catalog 管理等能力,并逐步覆盖更多的边缘场景和探索型场景。



阿里云 EMR Serverless Spark 版是一款面向 Data+AI 的高性能 Lakehouse 产品。它为企业提供了一站式的数据平台服务,包括任务开发、调试、调度和运维等,极大地简化了数据处理和模型训练的全流程。同时,它100%兼容开源 Spark 生态,能够无缝集成到客户现有的数据平台。使用 EMR Serverless Spark,企业可以更专注于数据处理分析和模型训练调优,提高工作效率。


EMR Serverless Spark 交流钉钉群:58570004119

image.png

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
18天前
|
分布式计算 运维 搜索推荐
立马耀:通过阿里云 Serverless Spark 和 Milvus 构建高效向量检索系统,驱动个性化推荐业务
蝉妈妈旗下蝉选通过迁移到阿里云 Serverless Spark 及 Milvus,解决传统架构性能瓶颈与运维复杂性问题。新方案实现离线任务耗时减少40%、失败率降80%,Milvus 向量检索成本降低75%,支持更大规模数据处理,查询响应提速。
133 57
|
1月前
|
人工智能 开发框架 安全
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
232 29
|
18天前
|
存储 SQL 运维
中国联通网络资源湖仓一体应用实践
本文分享了中国联通技术专家李晓昱在Flink Forward Asia 2024上的演讲,介绍如何借助Flink+Paimon湖仓一体架构解决传统数仓处理百亿级数据的瓶颈。内容涵盖网络资源中心概况、现有挑战、新架构设计及实施效果。新方案实现了数据一致性100%,同步延迟从3小时降至3分钟,存储成本降低50%,为通信行业提供了高效的数据管理范例。未来将深化流式数仓与智能运维融合,推动数字化升级。
中国联通网络资源湖仓一体应用实践
|
19天前
|
存储 运维 Serverless
千万级数据秒级响应!碧桂园基于 EMR Serverless StarRocks 升级存算分离架构实践
碧桂园服务通过引入 EMR Serverless StarRocks 存算分离架构,解决了海量数据处理中的资源利用率低、并发能力不足等问题,显著降低了硬件和运维成本。实时查询性能提升8倍,查询出错率减少30倍,集群数据 SLA 达99.99%。此次技术升级不仅优化了用户体验,还结合AI打造了“一看”和“—问”智能场景助力精准决策与风险预测。
166 69
|
1月前
|
人工智能 开发框架 运维
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
Serverless MCP 运行时业界首发,函数计算支持阿里云百炼 MCP 服务!阿里云百炼发布业界首个全生命周期 MCP 服务,无需用户管理资源、开发部署、工程运维等工作,5 分钟即可快速搭建一个连接 MCP 服务的 Agent(智能体)。作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力。
191 0
 Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
|
2月前
|
Java 数据库连接 API
YashanDB应用程序与网络体系
YashanDB应用程序与网络体系
|
2月前
|
机器学习/深度学习 数据采集 编解码
基于DeepSeek的生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)通过生成器和判别器的对抗训练,生成高质量的合成数据,在图像生成等领域展现巨大潜力。DeepSeek作为高效深度学习框架,提供便捷API支持GAN快速实现和优化。本文详细介绍基于DeepSeek的GAN技术,涵盖基本原理、实现步骤及代码示例,展示其在图像生成中的应用,并探讨优化与改进方法,如WGAN、CGAN等,解决模式崩溃、训练不稳定等问题。最后,总结GAN在艺术创作、数据增强、图像修复等场景的应用前景。
306 16
|
2月前
|
负载均衡 容灾 Cloud Native
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
云原生应用网关进阶:阿里云网络ALB Ingress 全面增强
|
2月前
|
人工智能 运维 架构师
Serverless + AI 让应用开发更简单,加速应用智能化
Serverless + AI 让应用开发更简单,加速应用智能化
106 5
|
3月前
|
SQL 存储 OLAP
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式
阿里云 EMR Serverless StarRocks3.x,极速统一的湖仓新范式