兼容PyTorch、TF,史上最灵活Python机器学习框架发布 | 一周AI最火论文

简介: 兼容PyTorch、TF,史上最灵活Python机器学习框架发布 | 一周AI最火论文

本周最佳学术研究

编写与PyTorch,TensorFlow,JAX和NumPy均兼容的代码

深度学习(DL)的进步正日益促进着越来越多DL框架的发展。这类框架提供了用于自动区分和GPU加速的高级且高效的API,并使得使用相对较少而直接的代码来实现异常复杂且功能强大的深度学习模型成为可能。

EagerPy是一个Python框架,可用于编写自动与PyTorch、TensorFlow、JAX和NumPy兼容的代码,而无需牺牲性能。

库开发人员不必选择仅支持这些框架之一而为每个框架重新实现库,或是选择处理代码重复问题。因此这类库的用户可以更轻松地切换框架,而不会被一个第三方库锁定。除了支持多框架之外,EagerPy还对链接到所有框架的方法都提供了详尽的类型注释和一致的支持。

Github传送门:
https://github.com/jonasrauber/eagerpy

EagerPy传送门:
https://eagerpy.jonasrauber.de/

原文:
https://arxiv.org/pdf/2008.04175v1.pdf

用于图无监督学习的面向API的开源Python框架

在这项工作中,研究人员介绍了一个Python框架Karate Club。它结合了30多种可用于无监督机器学习任务的最新的图挖掘算法。具体来说,它支持社区检测、节点嵌入和整个图嵌入技术。它建立在NetworkX、PyGSP、Gensim、NumPy和SciPy Sparse等对图形数据进行无监督学习的开源包的基础上。

本文还运用实例讨论了该框架背后的设计原理。研究人员还展示了Karate Club在学习广泛的现实世界中的聚类问题和分类任务等中高效的学习性能,并证明了其具有竞争力的速度。

该软件包的主要目标是使广泛的机器学习研究人员和从业人员可以使用社区检测、节点和整个图形嵌入技术。

Github传送门:
https://github.com/benedekrozemberczki/karateclub

原文:
https://arxiv.org/abs/2003.04819v3

帮助RL落地应用:易于使用且灵活的仿真套件

强化学习(RL)已证明其在解决多个AI领域复杂问题中的价值。但是,由于在实际应用时一系列假设很少能被满足,将RL部署到实际产品和系统中仍然面临很大的挑战。为了强调RL算法发展中的的核心问题、鼓励人们研究这些问题、并加快未来RL应用的实现进度,Google AI研究人员提出并讨论了九种不同的挑战,这些挑战阻碍了当前RL算法在应用系统中的应用。他们也使用最新的RL算法对这些挑战的模拟版本进行了实证研究,并对每种挑战的效果进行了基准测试。

研究人员已为读者提供了每种挑战的相关参考文献,用于指导相关从业者将RL应用于生产系统,并为相关研究人员提供了一个示例环境和评估标准来衡量这些挑战的进展。

挑战:
https://github.com/google-research/realworldrl_suite

原文:
https://ai.googleblog.com/2020/08/a-simulation-suite-for-tackling-applied.html

使用张量(Tensor)网络进行自适应学习

在本文中,蒙特利尔大学的研究人员利用张量网络的形式开发了一种通用且高效的张量学习自适应算法。所提出的方法基于一种简单的“贪心算法”,该“贪心算法”从一阶张量优化了可微分的损失函数,并针对小等级增量依次识别了最有希望的张量网络边缘。

该算法可以通过少量参数自适应地识别张量网络结构,从而有效地从数据中优化目标函数。这一框架相当全面,并且包含许多常见的张量优化问题。在张量分解和完成任务的综合数据方面都有实验能证明该算法的有效性,以及它优于传统方法的有效性。

原文:
https://arxiv.org/abs/2008.05437v1

Google Lookout:设备上的超市产品识别

随着现代智能手机上的计算能力不断增强,许多计算机视觉任务现在有可能完全在移动设备上高性能运行。通过结合MnasNet和MobileNets等设备上模型并结合设备上索引,可以实时运行完整的计算机视觉系统,例如对带有标签的产品进行识别。

利用此类技术,Google AI最近发布了Lookout,这是一个使用计算机视觉使视障用户可以更轻松地访问物理世界的安卓应用程序。当用户将智能手机的相机对准产品时,Lookout会识别它并大声说出品牌名称和产品尺寸。

为了实现这一强大功能,Lookout包括带有产品上商品索引的超市产品检测和识别模型,以及MediaPipe对象跟踪和光学字符识别模型。由此产生的架构足以在整个设备上实时运行,研究人员很期待能够继续探索这一技术在未来的应用,同时继续进行研究以提高底层设备模型的质量和健壮性。

阅读更多:
https://ai.googleblog.com/2020/07/on-device-supermarket-product.html

其他爆款论文

Google AI:我们将虹膜和深度估计模型作为跨平台的MediaPipe管道发布:
https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-tracking.html

用于徽标(Logo)检测的大规模图像数据集:
https://github.com/Wangjing1551/LogoDet-3K-Dataset

Google进行语言模型预训练的新范例:
https://github.com/google-research/language/tree/master/language/realm

具有强大功能的高效Visual SLAM系统——DXSLAM简介:
https://arxiv.org/abs/2008.05416v1

多模式深度学习符合遥感影像分类:
https://arxiv.org/abs/2008.05457v1

学习资源

统计机器学习课程链接:
http://www.it.uu.se/edu/course/homepage/sml/lectures/

Google,Facebook,Amazon,Microsoft,Kaggle,GE和Cornerstone中的ML用例:
https://www.bernardmarr.com/img/bigdata-case-studybook_final.pdf?fbclid=IwAR0JCmOFEQ3ztA7eOBszuhascmSPW20laiklWAOWcbyJvjF-CV6r9FrfRS4

AI大事件

一个大学生用假冒的AI生成的博客诈骗:
https://www.technologyreview.com/2020/08/14/1006780/ai-gpt-3-fake-blog-reached-top-of-hacker-news/

零售商如何使用AI来预测你何时会剁手:
https://www.forbes.com/sites/johnkoetsier/2020/08/13/how-retailers-use-ai-to-predict-when-youll-buy/#2feb85e75421

量子计算对人工智能来说意味着什么?
https://www.forbes.com/sites/tomtaulli/2020/08/14/quantum-computing-what-does-it-mean-for-ai-artificial-intelligence/#3db9fe23b4c8

相关文章
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
93 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
87 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
128 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
64 2
|
1月前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
34 0
|
1月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
44 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
50 0