基于MaxCompute分布式Python能力的大规模数据科学分析

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 如何利用云上分布式 Python 加速数据科学。如果你熟悉 numpy、pandas 或者 sklearn 这样的数据科学技术栈,同时又受限于平台的计算性能无法处理,本文介绍的 MaxCompute 可以让您利用并行和分布式技术来加速数据科学。也就是说只要会用 numpy、pandas 和 scikit-learn 之一,就会用 MaxCompute 分布式 Python 的能力。

本文作者 孟硕 阿里云智能 产品专家


直播视频请点击 直播观看


一、Python 生态的重要性

Why Python


Python has grown to become the dominant language both in data analytics, and general programming。

根据技术问答网站stack overflow统计,Python、C#、Javascript、java、php、C++、SQL、R、statistics这些编程语言从2009年至2021年的趋势图如下图所示。可以看出Python的趋势是呈现上涨趋势,特别是在数据分析和数据科学领域,几乎是top one的编程语言。这是Python生态的发展趋势。当然,在数据分析数据科学机器学习这个领域,不只是有编程语言这一个因素。


图片 1.png

          统计来自 https://insights.stackoverflow.com/trends


数据科学技术栈

在数据科学领域编程语言只是一个方面,语言不止包含Python,也有数据分析人员用SQL,或者传统分析语言R,或者是函数式编程语言Scala。第二个方面需要有数据分析对应的库,比如NumPy、pandas等,或者是基于可视化的库会在里面。Python运行的集群还会有一些运维的技术栈在里面,比如可以运行在docker或者是kubernetes上。如果要做数据分析数据科学,前期需要对数据进行清洗,有一些ETL的过程。有一些清洗不只是一两步能完成的,需要用工作流去完成整体的ETL的过程。里面涉及到最流行的组件比如Spark,整个工作流调度Airflow,最终结果做一个呈现,就需要存储,一般用PostgreSQL数据库或者内存数据库redis,对外再连接一个BI工具,做最终结果的展示。还有比如机器学习的一些组件或者平台,TensorFlow、PyTorch等。如果是设计到Web开发,快速搭建起一个前端平台,还会用的比如Flask等。最后包括一个商业智能的软件,比如有BI工具tableau、Power BI,或者是数据科学领域经常用到的软件SaaS。


这就是整个数据科学技术栈比较完整的一个视图。我们从编程语言切入,发现如果要实现大规模数据的数据科学是需要方方面面的考量。


2.png

二、MaxCompute 分布式 Python 能力介绍

MaxCompute 分布式 Python 技术 - PyODPS

MaxCompute是一款SaaS模式的云数据仓库,基于MaxCompute是有兼容Python的能力。


PyODPS 是 MaxCompute 的 Python 版本的 SDK, 它提供了对 MaxCompute 对象的基本操作;并提供了 DataFrame 框架(二维表结构,可以进行增删改查操作),能在 MaxCompute 上进行数据分析。


PyODPS 提交的 SQL 以及 DataFrame作业都会转换成 MaxCompute SQL 分布式运行;如果第三方库,能以 UDF+SQL 的形式运行,也可以分布式运行。

如果需要 Python 把作业拆成子任务分布式来运行,比如大规模的向量计算原生 Python 没有分布式能力,这时候推荐用 MaxCompute Mars。是可以把Python任务拆分成子任务进行运行的框架。


Dome实践

请点击视频查看


自定义函数中使用三方包

假如不是单纯运行Python,需要借助一些Python第三方包,这个MaxCompute也是支持的。

流程如下:


Step1

确定使用到的第三方包

sklearn,scipy


Step2

找到对应报的所有依赖

sklearn,scipy,pytz,pandas,six,python-dateutil


Step3

下载对应的三方包(pypi)

python-dateutil-2.6.0.zip,

pytz-2017.2.zip, six-1.11.0.tar.gz,

pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.zip,

scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.zip,

scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.zip


Step4

上传资源变成MaxCompute的一个Resource对象。

这样我们去创建函数,再引用自定义函数,就能够使用到第三方包。


自定义函数代码

deftest(x):
fromsklearnimportdatasets, svmfromscipyimportmiscimportnumpyasnpiris=datasets.load_iris()
clf=svm.LinearSVC()
clf.fit(iris.data, iris.target)
pred=clf.predict([[5.0, 3.6, 1.3, 0.25]])
assertpred[0] ==0assertmisc.face().shapeisnotNonereturnx

MaxCompute 分布式 Python 技术 - Mars

项目名字 Mars

最早是 MatrixandArray;登陆火星


为什么要做 Mars

  • 为大规模科学计算设计的:大数据引擎编程接口对科学计算不太友好,框架设计不是为科学计算模型考虑的
  • 传统科学计算基于单机,大规模科学计算需要用到超算

Tips科学计算:计算机梳理数据: Excel-> 数据库 (MySQL)->  Hadoop, Spark, MaxCompute 数据量有 了很大变化,计算模型没有变化,二维表,投影、切片、聚合、筛选和排序,基于关系代数,集合论;科学计算基础结构不是二维表:例如图片2维度,每个像素点不是一个数字(RGB+α 透明通道)

  • 传统 SQL 模型处理能力不足:线性代数,行列式的相乘,现有数据库效率低
  • 现状 R,Numpy 单机基于单机;  Python 生态的 Dask 大数据到科学计算的桥梁


案例

客户A MaxCompute 现有数据,需要针对这些 百亿数据 TB 级别的数据相乘;现有 MapReduce 模式性能低;用 Mars 就可以高效的解决;目前是唯一一个大规模科学计算引擎


加速数据科学的新方式

加速数据科学的方式如下图所示。

基于DASK或者是 MaxCompute Mars其实是 Scale up 和 Scale out 兼容的方式。在下图左下代表单机运行Python 的库做数据科学的一个方式。大规模超算的思路是Scale up,也就是线上垂直扩散,增加硬件能力,比如可以利用多核,当前每台电脑或服务器上不止一核,包括GPU、TPU、NPU等做深度学习的硬件。可以把Python移植到这些硬件上做一些加速。这里的技术包含比如Modin是做多核加速pandas。在右下,也有一些框架在做分布式Python,比如RAY是蚂蚁的一款框架服务,本质上Mars是可以运行在RAY上,相当于Python生态的一个调度,一个kubernetes。DASK也是在做分布式Python,包括Mars。当然,最佳的模式是 Scale up 和 Scale out 两种做一个组合。这样的好处是,可以做分布式,在单节点上也可以利用硬件能力。Mars当前只能在大规模集群上,单机配置在GPU集群。

3.png

分布 Python 的设计逻辑

Mars本质上设计思路是把数据科学库分布式化掉,比如Python,可以把Dataframe做一个拆分,包括Numpy,Scikit-Learn。


4.png

把大规模作业拆分成小作业来做分布式计算。本身框架就是拆成作业用的,首先客户端提交一个作业,Mars框架把作业拆分,做一个DAG图,最后汇总收集计算结果。

5.png

Mars 场景1 CPU和GPU混合计算

1、安全和金融领域,传统大数据平台挖掘周期长,资源紧张,等待周期长。

2、Mars DataFrame加速数据处理:大规模排序;统计;聚合分析

3、Mars learn 加速无监督学习;Mars拉起分布式深度学习计算

4、 使用 GPU 加速特定计算。


Mars 场景2 可解释性计算

1、广告归因&洞察特征的解释算法,本身计算量巨大,耗时长。

2、使用 Mars Remote 将计算用数十台服务器进行加速,提升百倍性能。


Mars场景3 大规模k-最邻近算法

1、Embedding 的流行使得用向量表述实体非常常见。

2、Mars NearestNeighbors算法兼容 scikit-learn。暴力算法在300万向量和300万向量计算top10相似计算(9万亿次向量比对)中,用20个worker两个小时计算完成,大数据平台基于SQL+UDF的方式无法完成计算。更小规模 Mars 相比大数据平台性能提升百倍

3、Mars 支持分布式的方式加速Faiss、Proxima(阿里达摩院向量检索库),达到千万和亿级别规模。


三、最佳实践

Mars本身会集成一些Python第三方包,基本主流机器学习和深度学习的库都包含在里面。下方Demo讲一个使用Mars做智能推荐,用lightgbm做一个分类算法,比如有一些优惠判断是不是给某些用户做推送。


Mars 包括的第三方包:

https://pyodps.readthedocs.io/zh_CN/latest/mars-third-parties.html


第一张图上主要步骤是通过 AK、project 名字、Endpoint 信息连接到 MaxCompute。接下来创建一个4节点,每个节点8 core,32G 的集群,应用 extended 扩展包,并生成 100w 用户 64维度描述信息的训练数据。

image.png

利用 Lightgbm 2分类算法的模型训练:

image.png

将模型以 Create resource 方式传到 MaxCompute 作为 resource 对象,准备测试集数据

image.png

使用测试测试集数据验证模型,得出分类:

9.png

更多关于大数据计算、云数据仓库技术交流,欢迎扫码查看咨询。

MaxCompute 二维码拼图.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
25天前
|
缓存 Rust 算法
从混沌到秩序:Python的依赖管理工具分析
Python 的依赖管理工具一直没有标准化,主要原因包括历史发展的随意性、社区的分散性、多样化的使用场景、向后兼容性的挑战、缺乏统一治理以及生态系统的快速变化。依赖管理工具用于处理项目中的依赖关系,确保不同环境下的依赖项一致性,避免软件故障和兼容性问题。常用的 Python 依赖管理工具如 pip、venv、pip-tools、Pipenv、Poetry 等各有优缺点,选择时需根据项目需求权衡。新工具如 uv 和 Pixi 在性能和功能上有所改进,值得考虑。
83 35
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
在现代数据分析中,高维时间序列数据的处理和预测极具挑战性。基于矩阵分解的长期事件(MFLEs)分析技术应运而生,通过降维和时间序列特性结合,有效应对大规模数据。MFLE利用矩阵分解提取潜在特征,降低计算复杂度,过滤噪声,并发现主要模式。相比传统方法如ARIMA和深度学习模型如LSTM,MFLE在多变量处理、计算效率和可解释性上更具优势。通过合理应用MFLE,可在物联网、金融等领域获得良好分析效果。
62 0
使用Python实现基于矩阵分解的长期事件(MFLEs)时间序列分析
|
27天前
|
数据采集 数据可视化 数据挖掘
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
本文探讨了金融资产波动率建模中的三种主流方法:GARCH、GJR-GARCH和HAR模型,基于SPY的实际交易数据进行实证分析。GARCH模型捕捉波动率聚类特征,GJR-GARCH引入杠杆效应,HAR整合多时间尺度波动率信息。通过Python实现模型估计与性能比较,展示了各模型在风险管理、衍生品定价等领域的应用优势。
238 66
金融波动率的多模型建模研究:GARCH族与HAR模型的Python实现与对比分析
|
17天前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
90 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
1月前
|
数据可视化 算法 数据挖掘
Python时间序列分析工具Aeon使用指南
**Aeon** 是一个遵循 scikit-learn API 风格的开源 Python 库,专注于时间序列处理。它提供了分类、回归、聚类、预测建模和数据预处理等功能模块,支持多种算法和自定义距离度量。Aeon 活跃开发并持续更新至2024年,与 pandas 1.4.0 版本兼容,内置可视化工具,适合数据探索和基础分析任务。尽管在高级功能和性能优化方面有提升空间,但其简洁的 API 和完整的基础功能使其成为时间序列分析的有效工具。
79 37
Python时间序列分析工具Aeon使用指南
|
1月前
|
机器学习/深度学习 运维 数据可视化
Python时间序列分析:使用TSFresh进行自动化特征提取
TSFresh 是一个专门用于时间序列数据特征自动提取的框架,支持分类、回归和异常检测等机器学习任务。它通过自动化特征工程流程,处理数百个统计特征(如均值、方差、自相关性等),并通过假设检验筛选显著特征,提升分析效率。TSFresh 支持单变量和多变量时间序列数据,能够与 scikit-learn 等库无缝集成,适用于大规模时间序列数据的特征提取与模型训练。其工作流程包括数据格式转换、特征提取和选择,并提供可视化工具帮助理解特征分布及与目标变量的关系。
70 16
Python时间序列分析:使用TSFresh进行自动化特征提取
|
1月前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
115 35
|
1月前
|
分布式计算 DataWorks 数据处理
产品测评 | 上手分布式Python计算服务MaxFrame产品最佳实践
MaxFrame是阿里云自研的分布式计算框架,专为大数据处理设计,提供高效便捷的Python开发体验。其主要功能包括Python编程接口、直接利用MaxCompute资源、与MaxCompute Notebook集成及镜像管理功能。本文基于MaxFrame最佳实践,详细介绍了在DataWorks中使用MaxFrame创建数据源、PyODPS节点和MaxFrame会话的过程,并展示了如何通过MaxFrame实现分布式Pandas处理和大语言模型数据处理。测评反馈指出,虽然MaxFrame具备强大的数据处理能力,但在文档细节和新手友好性方面仍有改进空间。
|
1月前
|
人工智能 分布式计算 大数据
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
76 7
|
30天前
|
数据采集 缓存 API
python爬取Boss直聘,分析北京招聘市场
本文介绍了如何使用Python爬虫技术从Boss直聘平台上获取深圳地区的招聘数据,并进行数据分析,以帮助求职者更好地了解市场动态和职位需求。

相关产品

  • 云原生大数据计算服务 MaxCompute