基于MaxCompute分布式Python能力的大规模数据科学分析

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 如何利用云上分布式 Python 加速数据科学。如果你熟悉 numpy、pandas 或者 sklearn 这样的数据科学技术栈,同时又受限于平台的计算性能无法处理,本文介绍的 MaxCompute 可以让您利用并行和分布式技术来加速数据科学。也就是说只要会用 numpy、pandas 和 scikit-learn 之一,就会用 MaxCompute 分布式 Python 的能力。

本文作者 孟硕 阿里云智能 产品专家


直播视频请点击 直播观看


一、Python 生态的重要性

Why Python


Python has grown to become the dominant language both in data analytics, and general programming。

根据技术问答网站stack overflow统计,Python、C#、Javascript、java、php、C++、SQL、R、statistics这些编程语言从2009年至2021年的趋势图如下图所示。可以看出Python的趋势是呈现上涨趋势,特别是在数据分析和数据科学领域,几乎是top one的编程语言。这是Python生态的发展趋势。当然,在数据分析数据科学机器学习这个领域,不只是有编程语言这一个因素。


图片 1.png

          统计来自 https://insights.stackoverflow.com/trends


数据科学技术栈

在数据科学领域编程语言只是一个方面,语言不止包含Python,也有数据分析人员用SQL,或者传统分析语言R,或者是函数式编程语言Scala。第二个方面需要有数据分析对应的库,比如NumPy、pandas等,或者是基于可视化的库会在里面。Python运行的集群还会有一些运维的技术栈在里面,比如可以运行在docker或者是kubernetes上。如果要做数据分析数据科学,前期需要对数据进行清洗,有一些ETL的过程。有一些清洗不只是一两步能完成的,需要用工作流去完成整体的ETL的过程。里面涉及到最流行的组件比如Spark,整个工作流调度Airflow,最终结果做一个呈现,就需要存储,一般用PostgreSQL数据库或者内存数据库redis,对外再连接一个BI工具,做最终结果的展示。还有比如机器学习的一些组件或者平台,TensorFlow、PyTorch等。如果是设计到Web开发,快速搭建起一个前端平台,还会用的比如Flask等。最后包括一个商业智能的软件,比如有BI工具tableau、Power BI,或者是数据科学领域经常用到的软件SaaS。


这就是整个数据科学技术栈比较完整的一个视图。我们从编程语言切入,发现如果要实现大规模数据的数据科学是需要方方面面的考量。


2.png

二、MaxCompute 分布式 Python 能力介绍

MaxCompute 分布式 Python 技术 - PyODPS

MaxCompute是一款SaaS模式的云数据仓库,基于MaxCompute是有兼容Python的能力。


PyODPS 是 MaxCompute 的 Python 版本的 SDK, 它提供了对 MaxCompute 对象的基本操作;并提供了 DataFrame 框架(二维表结构,可以进行增删改查操作),能在 MaxCompute 上进行数据分析。


PyODPS 提交的 SQL 以及 DataFrame作业都会转换成 MaxCompute SQL 分布式运行;如果第三方库,能以 UDF+SQL 的形式运行,也可以分布式运行。

如果需要 Python 把作业拆成子任务分布式来运行,比如大规模的向量计算原生 Python 没有分布式能力,这时候推荐用 MaxCompute Mars。是可以把Python任务拆分成子任务进行运行的框架。


Dome实践

请点击视频查看


自定义函数中使用三方包

假如不是单纯运行Python,需要借助一些Python第三方包,这个MaxCompute也是支持的。

流程如下:


Step1

确定使用到的第三方包

sklearn,scipy


Step2

找到对应报的所有依赖

sklearn,scipy,pytz,pandas,six,python-dateutil


Step3

下载对应的三方包(pypi)

python-dateutil-2.6.0.zip,

pytz-2017.2.zip, six-1.11.0.tar.gz,

pandas-0.20.2-cp27-cp27m-manylinux1_x86_64.zip,

scipy-0.19.0-cp27-cp27m-manylinux1_x86_64.zip,

scikit_learn-0.18.1-cp27-cp27m-manylinux1_x86_64.zip


Step4

上传资源变成MaxCompute的一个Resource对象。

这样我们去创建函数,再引用自定义函数,就能够使用到第三方包。


自定义函数代码

deftest(x):
fromsklearnimportdatasets, svmfromscipyimportmiscimportnumpyasnpiris=datasets.load_iris()
clf=svm.LinearSVC()
clf.fit(iris.data, iris.target)
pred=clf.predict([[5.0, 3.6, 1.3, 0.25]])
assertpred[0] ==0assertmisc.face().shapeisnotNonereturnx

MaxCompute 分布式 Python 技术 - Mars

项目名字 Mars

最早是 MatrixandArray;登陆火星


为什么要做 Mars

  • 为大规模科学计算设计的:大数据引擎编程接口对科学计算不太友好,框架设计不是为科学计算模型考虑的
  • 传统科学计算基于单机,大规模科学计算需要用到超算

Tips科学计算:计算机梳理数据: Excel-> 数据库 (MySQL)->  Hadoop, Spark, MaxCompute 数据量有 了很大变化,计算模型没有变化,二维表,投影、切片、聚合、筛选和排序,基于关系代数,集合论;科学计算基础结构不是二维表:例如图片2维度,每个像素点不是一个数字(RGB+α 透明通道)

  • 传统 SQL 模型处理能力不足:线性代数,行列式的相乘,现有数据库效率低
  • 现状 R,Numpy 单机基于单机;  Python 生态的 Dask 大数据到科学计算的桥梁


案例

客户A MaxCompute 现有数据,需要针对这些 百亿数据 TB 级别的数据相乘;现有 MapReduce 模式性能低;用 Mars 就可以高效的解决;目前是唯一一个大规模科学计算引擎


加速数据科学的新方式

加速数据科学的方式如下图所示。

基于DASK或者是 MaxCompute Mars其实是 Scale up 和 Scale out 兼容的方式。在下图左下代表单机运行Python 的库做数据科学的一个方式。大规模超算的思路是Scale up,也就是线上垂直扩散,增加硬件能力,比如可以利用多核,当前每台电脑或服务器上不止一核,包括GPU、TPU、NPU等做深度学习的硬件。可以把Python移植到这些硬件上做一些加速。这里的技术包含比如Modin是做多核加速pandas。在右下,也有一些框架在做分布式Python,比如RAY是蚂蚁的一款框架服务,本质上Mars是可以运行在RAY上,相当于Python生态的一个调度,一个kubernetes。DASK也是在做分布式Python,包括Mars。当然,最佳的模式是 Scale up 和 Scale out 两种做一个组合。这样的好处是,可以做分布式,在单节点上也可以利用硬件能力。Mars当前只能在大规模集群上,单机配置在GPU集群。

3.png

分布 Python 的设计逻辑

Mars本质上设计思路是把数据科学库分布式化掉,比如Python,可以把Dataframe做一个拆分,包括Numpy,Scikit-Learn。


4.png

把大规模作业拆分成小作业来做分布式计算。本身框架就是拆成作业用的,首先客户端提交一个作业,Mars框架把作业拆分,做一个DAG图,最后汇总收集计算结果。

5.png

Mars 场景1 CPU和GPU混合计算

1、安全和金融领域,传统大数据平台挖掘周期长,资源紧张,等待周期长。

2、Mars DataFrame加速数据处理:大规模排序;统计;聚合分析

3、Mars learn 加速无监督学习;Mars拉起分布式深度学习计算

4、 使用 GPU 加速特定计算。


Mars 场景2 可解释性计算

1、广告归因&洞察特征的解释算法,本身计算量巨大,耗时长。

2、使用 Mars Remote 将计算用数十台服务器进行加速,提升百倍性能。


Mars场景3 大规模k-最邻近算法

1、Embedding 的流行使得用向量表述实体非常常见。

2、Mars NearestNeighbors算法兼容 scikit-learn。暴力算法在300万向量和300万向量计算top10相似计算(9万亿次向量比对)中,用20个worker两个小时计算完成,大数据平台基于SQL+UDF的方式无法完成计算。更小规模 Mars 相比大数据平台性能提升百倍

3、Mars 支持分布式的方式加速Faiss、Proxima(阿里达摩院向量检索库),达到千万和亿级别规模。


三、最佳实践

Mars本身会集成一些Python第三方包,基本主流机器学习和深度学习的库都包含在里面。下方Demo讲一个使用Mars做智能推荐,用lightgbm做一个分类算法,比如有一些优惠判断是不是给某些用户做推送。


Mars 包括的第三方包:

https://pyodps.readthedocs.io/zh_CN/latest/mars-third-parties.html


第一张图上主要步骤是通过 AK、project 名字、Endpoint 信息连接到 MaxCompute。接下来创建一个4节点,每个节点8 core,32G 的集群,应用 extended 扩展包,并生成 100w 用户 64维度描述信息的训练数据。

image.png

利用 Lightgbm 2分类算法的模型训练:

image.png

将模型以 Create resource 方式传到 MaxCompute 作为 resource 对象,准备测试集数据

image.png

使用测试测试集数据验证模型,得出分类:

9.png

更多关于大数据计算、云数据仓库技术交流,欢迎扫码查看咨询。

MaxCompute 二维码拼图.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
22天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费模式分析的深度学习模型
使用Python实现智能食品消费模式分析的深度学习模型
115 70
|
11天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
129 73
|
24天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品消费习惯分析的深度学习模型
使用Python实现智能食品消费习惯分析的深度学习模型
127 68
|
20天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
97 36
|
6天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
66 15
|
6天前
|
人工智能 分布式计算 数据处理
云产品评测:MaxFrame — 分布式Python计算服务的最佳实践与体验
阿里云推出的MaxFrame是一款高性能分布式计算平台,专为大规模数据处理和AI应用设计。它提供了强大的Python编程接口,支持分布式Pandas操作,显著提升数据处理速度(3-5倍)。MaxFrame在大语言模型数据处理中表现出色,具备高效内存管理和任务调度能力。然而,在开通流程、API文档及功能集成度方面仍有改进空间。总体而言,MaxFrame在易用性和计算效率上具有明显优势,但在开放性和社区支持方面有待加强。
32 9
|
14天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
61 15
|
18天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
78 18
|
7天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
35 2
|
8天前
|
存储 分布式计算 安全
MaxCompute Bloomfilter index 在蚂蚁安全溯源场景大规模点查询的最佳实践
MaxCompute 在11月最新版本中全新上线了 Bloomfilter index 能力,针对大规模数据点查场景,支持更细粒度的数据裁剪,减少查询过程中不必要的数据扫描,从而提高整体的查询效率和性能。

相关产品

  • 云原生大数据计算服务 MaxCompute