四步训练出自己的CNN手写识别模型 | 《阿里云机器学习PAI-DSW入门指南》

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 本节介绍四步训练出自己的CNN手写识别模型。

点击即可参与机器学习PAI-DSW动手实验室

点击可下载完整电子书《阿里云机器学习PAI-DSW入门指南》

虽然已经 9102 年了MNIST手写数据集也早已经被各路神仙玩出了各种花样,比如其中比较秀的有用MINST训练手写日语字体的。但是目前还是很少有整体的将训练完之后的结果部署为一个可使用的服务的。大多数还是停留在最终Print出一个Accuracy。

这一次,借助阿里云的PAI-DSW来快速构建训练一个手写模型并且部署出一个生产可用级别的服务的教程让大家可以在其他的产品中调用这个服务作出更加有意思的项目。

这篇文章里我们先讲讲如何构建训练并导出这个手写字体识别的模型。整个教程的代码基于Snapchat的ML大佬 Aymeric DamienTensorflow 入门教程系列

第一步: 下载代码

首先我们可以把代码Clone到本地或者直接Clone到DSW的实例。如何Clone到DSW实例的方法可以参考我的这篇文章。Clone完代码之后我们还需要准备训练所需要的数据集这边可以直接从Yann Lecun的网站下载。我这边然后我们可先运行一遍看一下效果。
image.png
我们可以看到代码Clone下来之后直接运行就已经帮我们训练出了model并且给出了现在这个Model的精度。在500个batch之后准确率达到了95%以上而且基于GPU的DSW实例训练这500个Batch只需要十几秒的时间。

第二步: 修改部分代码使得可以自动导出SavedModel

这一步就是比较重要的地方了我们第一个需要关注的就是当前的这个Model里面的Input和Output.
Input还比较清楚我们直接找所有placeholder就可以了。
image.png
Output这一块就比较复杂了,在当前的model里我们可以看到output并不是直接定义的Y而是softmax之后的prediction
image.png
找到了这些之后就比较简单了。首先我们创建一个 Saver , 它可以帮助我们保存所有的tf变量以便之后导出模型使用

# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()

然后我们在模型训练的session结束的时候导出模型就好了。我们可以通过以下这段代码来导出我们训练好的模型。

import datetime
# 声明导出模型路径这边加入了时间作为路径名 这样每次训练的时候就可以保存多个版本的模型了
export_path = "./model-" + datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S')

# 保存训练的日志文件方便如果出问题了我们可以用 tensorboard 来可视化神经网络排查问题
tf.summary.FileWriter('./graph-' + datetime.datetime.now().strftime('%Y-%m-%d_%H:%M:%S') , sess.graph)

# 构建我们的Builder
builder = tf.saved_model.builder.SavedModelBuilder(export_path)

# 声明各种输入这里有一个X和一个keep_prob作为输入然后
tensor_info_x = tf.saved_model.utils.build_tensor_info(X)
tensor_info_keep_prob = tf.saved_model.utils.build_tensor_info(keep_prob)
tensor_info_y = tf.saved_model.utils.build_tensor_info(prediction)

prediction_signature = (
    tf.saved_model.signature_def_utils.build_signature_def(
        # 声明输入
        inputs={
            'images': tensor_info_x,
            'keep_prob' : tensor_info_keep_prob
        },
        # 声明输出
        outputs={
            'scores': tensor_info_y
        },
        method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
    )
)



legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(
    sess, [tf.saved_model.tag_constants.SERVING],
    signature_def_map={
        'predict_images':
            prediction_signature,
    },
    legacy_init_op=legacy_init_op)
# 保存模型
builder.save()

我们可以把这段代码插在这里这样训练完成的时候就会自动导出了。
image.png
导出之后应该会有如下的文件结构我们也可以在左边的文件管理器中查看。

./model-2019-05-20_13:50:26
├── saved_model.pb
└── variables
    ├── variables.data-00000-of-00001
    └── variables.index

1 directory, 3 files

第三步: 部署我们的模型

终于到了可以部署的阶段了。但是在部署之前先别那么着急建议用 tensorboard 把训练日志下载到本地之后看一下。

这一步除了可以可视化的解释我们的模型之外还可以帮助我们理清我们的模型的输入和输出分别是什么。

这边我先在有日志文件的路径打开一个tensorboard 通过这个命令

tensorboard --logdir ./

然后我们在游览器里输入默认地址 localhost:6006 就可以看到了。
image.png
从这个图里也可以看到我们的这个Model里有2个输入源分别叫做images和keep_prob。并且点击它们之后我们还能看到对应的数据格式应该是什么样的。不过没有办法使用 Tensorboard 的同学也不用担心因为EAS这个产品也为我们提供了构造请求的方式。这一次部署我们先使用WEB界面来部署我们的服务这一步也可以通过EASCMD来实现之后我会再写一篇如何用好EASCMD的文章。

我们可以把模型文件下载完之后用zip打包然后到PAI产品的控制台点击EAS-模型在线服务。
ZIP打包可以用这个命令如果你是Unix的用户的话

zip -r model.zip path/to/model_files

进入EAS之后我们点击模型部署上传
image.png
然后继续配置我们的processor这一次因为我们是用tensorflow训练的所以选择Tensorflow
然后资源选择CPU有需要的同学可以考虑GPU然后上传我们的模型文件。
image.png
点击下一步我们选新建服务然后给我们的服务起个名字,并且配置资源数量。
image.png
然后最后确认一下就可以点击部署了。
image.png

第四步: 调试我们的模型

回到EAS的控制台我们可以看到我们的服务正在被构建中。等到状态显示Running的时候我们就可以开始调试了。
我们可以先点击在线调试。
image.png
会让我们跳转到一个Debug 接口的页面。什么都不需要填直接点击提交我们就可以看到服务的数据格式了。
然后我们用一段python2的代码来调试这个刚刚部署完的服务。python3的SDK暂时还在研发中。注意要把下面的
app_key, app_secret, url 换成我们刚刚部署好的内容。点击模型名字就可以看见了。
其中测试图片的数据大家可以在下载到。

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import json

from urlparse import urlparse
from com.aliyun.api.gateway.sdk import client
from com.aliyun.api.gateway.sdk.http import request
from com.aliyun.api.gateway.sdk.common import constant
from pai_tf_predict_proto import tf_predict_pb2

import cv2
import numpy as np

with open('9.jpg', 'rb') as infile:
    buf = infile.read()
    # 使用numpy将字节流转换成array
    x = np.fromstring(buf, dtype='uint8')
    # 将读取到的array进行图片解码获得28 × 28的矩阵
    img = cv2.imdecode(x, cv2.IMREAD_UNCHANGED)
    # 由于预测服务API需要长度为784的一维向量将矩阵reshape成784
    img = np.reshape(img, 784)

def predict(url, app_key, app_secret, request_data):
    cli = client.DefaultClient(app_key=app_key, app_secret=app_secret)
    body = request_data
    url_ele = urlparse(url)
    host = 'http://' + url_ele.hostname
    path = url_ele.path
    req_post = request.Request(host=host, protocol=constant.HTTP, url=path, method="POST", time_out=6000)
    req_post.set_body(body)
    req_post.set_content_type(constant.CONTENT_TYPE_STREAM)
    stat,header, content = cli.execute(req_post)
    return stat, dict(header) if header is not None else {}, content


def demo():
    # 输入模型信息,点击模型名字就可以获取到了
    app_key = 'YOUR_APP_KEY'
    app_secret = 'YOUR_APP_SECRET'
    url = 'YOUR_APP_URL'

    # 构造服务
    request = tf_predict_pb2.PredictRequest()
    request.signature_name = 'predict_images'
    request.inputs['images'].dtype = tf_predict_pb2.DT_FLOAT  # images 参数类型
    request.inputs['images'].array_shape.dim.extend([1, 784])  # images参数的形状
    request.inputs['images'].float_val.extend(img)  # 数据

    request.inputs['keep_prob'].dtype = tf_predict_pb2.DT_FLOAT  # keep_prob 参数的类型
    request.inputs['keep_prob'].float_val.extend([0.75])  # 默认填写一个

    # å°†pbåºåˆ—化æˆstringè¿›è¡Œä¼ è¾“
    request_data = request.SerializeToString()

    stat, header, content = predict(url, app_key, app_secret, request_data)
    if stat != 200:
        print 'Http status code: ', stat
        print 'Error msg in header: ', header['x-ca-error-message'] if 'x-ca-error-message' in header else ''
        print 'Error msg in body: ', content
    else:
        response = tf_predict_pb2.PredictResponse()
        response.ParseFromString(content)
        print(response)


if __name__ == '__main__':
    demo()

运行这个python代码然后我们会得到

outputs {
  key: "scores"
  value {
    dtype: DT_FLOAT
    array_shape {
      dim: 1
      dim: 10
    }
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 0.0
    float_val: 1.0
  }
}

我们可以看到从0开始数的最后一个也就是第9个的结果是1 其他都是0 说明我们的结果是9和我们输入的一样。这样我们就简单轻松的构建了一个在线服务能够将用户的图片中手写数字识别出来。配合其他Web框架或者更多的东西我们就可以作出更好玩的玩具啦。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
8天前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI 和 LLaMA Factory 框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
|
17天前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
51 3
|
13天前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
12天前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
13天前
|
机器学习/深度学习
ACM MM24:复旦提出首个基于扩散模型的视频非限制性对抗攻击框架,主流CNN和ViT架构都防不住它
【9月更文挑战第23天】复旦大学研究团队提出了ReToMe-VA,一种基于扩散模型的视频非限制性对抗攻击框架,通过时间步长对抗性潜在优化(TALO)与递归令牌合并(ReToMe)策略,实现了高转移性且难以察觉的对抗性视频生成。TALO优化去噪步骤扰动,提升空间难以察觉性及计算效率;ReToMe则确保时间一致性,增强帧间交互。实验表明,ReToMe-VA在攻击转移性上超越现有方法,但面临计算成本高、实时应用受限及隐私安全等挑战。[论文链接](http://arxiv.org/abs/2408.05479)
26 3
|
25天前
|
机器学习/深度学习 Python
训练集、测试集与验证集:机器学习模型评估的基石
在机器学习中,数据集通常被划分为训练集、验证集和测试集,以评估模型性能并调整参数。训练集用于拟合模型,验证集用于调整超参数和防止过拟合,测试集则用于评估最终模型性能。本文详细介绍了这三个集合的作用,并通过代码示例展示了如何进行数据集的划分。合理的划分有助于提升模型的泛化能力。
|
25天前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
34 1
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
165 1
|
17天前
|
机器学习/深度学习 数据采集 算法
机器学习新纪元:用Scikit-learn驾驭Python,精准模型选择全攻略!
在数据爆炸时代,机器学习成为挖掘数据价值的关键技术,而Scikit-learn作为Python中最受欢迎的机器学习库之一,凭借其丰富的算法集、简洁的API和高效性能,引领着机器学习的新纪元。本文通过一个实际案例——识别垃圾邮件,展示了如何使用Scikit-learn进行精准模型选择。从数据预处理、模型训练到交叉验证和性能比较,最后选择最优模型进行部署,详细介绍了每一步的操作方法。通过这个过程,我们不仅可以看到如何利用Scikit-learn的强大功能,还能了解到模型选择与优化的重要性。希望本文能为你的机器学习之旅提供有价值的参考。
21 0

相关产品

  • 人工智能平台 PAI
  • 下一篇
    无影云桌面