大数据常用技术栈

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 提起大数据,不得不提由IBM提出的关于大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),而对于大数据领域的从业人员的日常工作也与这5V密切相关。大数据技术在过去的几十年中取得非常迅速的发展,尤以Hadoop和Spark最为突出,已构建起庞大的技术生态体系圈

提起大数据,不得不提由IBM提出的关于大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),而对于大数据领域的从业人员的日常工作也与这5V密切相关。大数据技术在过去的几十年中取得非常迅速的发展,尤以Hadoop和Spark最为突出,已构建起庞大的技术生态体系圈。

首先通过一张图来了解一下目前大数据领域常用的一些技术,当然大数据发展至今所涉及技术远不止这些。

BigData Stack:
bigdatastack.jpg

下面分不同层介绍各个技术,当然各个层并不是字面意义上的严格划分,如Hive既提供数据处理功能也提供数据存储功能,但此处将其划为数据分析层中

1. 数据采集和传输层

Flume

Flume一个分布式、可靠的、高可用的用于数据采集、聚合和传输的系统。常用于日志采集系统中,支持定制各类数据发送方用于收集数据、通过自定义拦截器对数据进行简单的预处理并传输到各种数据接收方如HDFS、HBase、Kafka中。之前由Cloudera开发,后纳入Apache

Logstash

ELK工作栈的一员,也常用于数据采集,是开源的服务器端数据处理管道

Sqoop

Sqoop主要通过一组命令进行数据导入导出的工具,底层引擎依赖于MapReduce,主要用于Hadoop(如HDFS、Hive、HBase)和RDBMS(如mysql、oracle)之间的数据导入导出

Kafka

分布式消息系统。生产者(producer)——消费者(consumer)模型。提供了类似于JMS的特性,但设计上完全不同,不遵循JMS规范。如kafka允许多个消费者主动拉取数据,而JMS中只有点对点模式消费者才会主动拉取数据。主要应用在数据缓冲、异步通信、汇集数据、系统接偶等方面

Pulsar

pub-sub模式的分布式消息平台,拥有灵活的消息模型和直观的客户端API。类似于Kafka,但Pulsar支持多租户,有着资产和命名空间的概念,资产代表系统里的租户。假设有一个Pulsar集群用于支持多个应用程序,集群里的每个资产可以代表一个组织的团队、一个核心的功能或一个产品线。一个资产可以包含多个命名空间,一个命名空间可以包含任意个主题

2. 数据存储层

HBase

基于Google Bigtable的开源实现,是一个具有高可靠性、高性能、面向列、可伸缩性、典型的key/value分布式存储的nosql数据库系统,主要用于海量结构化和半结构化数据存储。它介于nosql和RDBMS之间,仅能通过行键(row key)和行键的range来检索数据,行数据存储是原子性的,仅支持单行事务(可通过hive支持来实现多表join等复杂操作)。HBase查询数据功能很简单,不支持join等复杂操作,不支持跨行和跨表事务

Kudu

介于HDFS和HBase之间的基于列式存储的分布式数据库。兼具了HBase的实时性、HDFS的高吞吐,以及传统数据库的sql支持

HDFS

分布式文件存储系统,具有高容错(high fault-tolerant)、高吞吐(high throughput)、高可用(high available)的特性。HDFS非常适合大规模数据集上的应用,提供高吞吐量的数据访问,可部署在廉价的机器上。它放宽了POSIX的要求,这样可以实现流的形式访问(文件系统中的数据。主要为各类分布式计算框架如Spark、MapReduce等提供海量数据存储服务,同时HDFS和HBase底层数据存储也依赖于HDFS

3. 数据分析层

Spark

Spark是一个快速、通用、可扩展、可容错的、内存迭代式计算的大数据分析引擎。目前生态体系主要包括用于批数据处理的SparkRDD、SparkSQL,用于流数据处理的SparkStreaming、Structured-Streaming,用于机器学习的Spark MLLib,用于图计算的Graphx以及用于统计分析的SparkR,支持Java、Scala、Python、R多种数据语言

Flink

分布式的大数据处理引擎,可以对有限数据流和无线数据流进行有状态的计算。Flink在设计之初就是以流为基础发展的,然后再进入批处理领域,相对于spark而言,它是一个真正意义上的实时计算引擎

Storm

由Twitter开源后归于Apache管理的分布式实时计算系统。Storm是一个没有批处理能力的数据流处理计算引擎,storm提供了偏底层的API,用户需要自己实现很多复杂的逻辑

MapReduce

分布式运算程序的编程框架,适用于离线数据处理场景,内部处理流程主要划分map和reduce两个阶段

Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供HQL语句(类SQL语言)查询功能,存储依赖于HDFS。支持多种计算引擎,如Spark、MapReduce(默认)、Tez;支持多种存储格式,如TextFile、SequenceFile、RCFile、ORC、Parquet(常用);支持多种压缩格式,如gzip、lzo、snappy(常用)、bzip2

Tez

支持DAG作业的开源计算框架。相对于MapReduce性能更好,主要原因在于其将作业描述为DAG(有向无环图),这一点与Spark类似

Pig

基于Hadoop的大规模数据分析平台,它包含了一种名为Pig Latin的脚本语言来描述数据流,并行地执行数据流处理的引擎,为复杂的海量数据并行计算提供了一个简单的操作和编程接口。Pig Latin本身提供了许多传统的数据操作,同时允许用户自己开发一些自定义函数用来读取、处理和写数据,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算

Mahout

提供一些可扩展的机器学习领域经典算法的实现,Mahout包含许多实现,包括聚类、分类、推荐过滤、频繁子项挖掘。通过使用Apache Hadoop 库,可以将Mahout扩展到云中

Phoenix

构建在HBase之上的一个SQL层,能让我们通过标准的JDBC API操作HBase中的数据。Phoenix完全使用Java编写,作为HBase内嵌的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准JDBC结果集

4. OLAP引擎

Druid

开源的、基于列存储的、分布式的,适用于实时数据分析的存储系统,能够快速聚合、灵活过滤、毫秒级查询和低延迟数据导入。通过使用Bitmap indexing加速列存储的查询速度,并使用CONCISE算法来对bitmap indexing进行压缩,使得生成的segments比原始文本文件小很多,并且它的各个组成部分之间耦合性低,如果不需要实时数据完全可以忽略实时节点

Kylin

最初由eBayInc.开发并贡献至开源社区的分布式分析引擎。提供Hadoop/Spark之上的SQL查询接口及多维分析(OLAP)能力以支持超大规模数据,它能在亚秒内查询巨大的Hive表。需要使用者对数仓模型有深度了解,并需构建cube。能够与多种可视化工具,如Tableau,PowerBI等,令用户可以使用BI工具对Hadoop数据进行分析

Impala

提供对HDFS、HBase等数据的高性能、低延迟的交互式SQL查询功能的大数据查询分析引擎,由Cloudera开源。它基于Hive,使用Hive的元数据在内存中计算,具有实时、批处理、高并发等优点

Presto

开源的分布式大数据SQL查询引擎,适用于交互式分析查询。可以将多个数据源的数据进行合并,并且可以直接从HDFS读取数据,在使用前不需要大量的ETL操作

5. 资源管理层

Yarn

Yarn是一个资源调度平台,负责为运算程序分配资源和调度,不参与用户程序内部工作。核心组件包括:ResourceManager(全局资源管理器,负责整个系统的资源管理和分配)、NodeManager(每个节点上的资源和任务管理器)

Kubernetes

又称K8s,为容器化的应用提供资源调度、部署运行、均衡容灾、服务注册、扩容缩容等功能的自动化容器操作的开源平台。具体体现在:自动化容器的部署和复制、随时扩展或收缩容器规模、将容器组织成组,并且提供容器间的负载均衡等。Kubernetes支持docker和Rocket,可以将Docker看成Kubernetes内部使用的低级别组件

Mesos

类似于Yarn,也是一个分布式资源管理平台,为MPI、Spark作业在统一资源管理环境下运行。它对Hadoop2.0支持很好,但国内用的不多

6. 工作流调度器

Oozie

基于工作流引擎的任务调度框架,能够提供能够提供对MapReduce和Pig 任务的调度与协调

Azkaban

由LinkedIn开源,相对Oozie更轻量级。用于在一个工作流内以一个特定顺序运行一组任务,通过一种kv文件格式来建立任务之间的依赖关系并为用户提供了易于使用的web界面来维护和跟踪允许任务的工作流

7. 其他

Ambari

基于web的安装部署工具,支持对大多数的Hadoop组件,如HDFS、MapReduce、Hive、Pig、HBase等的管理和监控

Zookeeper

分布式协调服务即为用户的分布式应用程序提供协调服务,如主从协调、服务器节点动态上下线、统一配置管理、分布式共享锁等,它本身也是一个分布式程序(部署奇数台,只要由半数以上zookeeper节点存活,zookeeper集群就能正常提供服务),它是Google Chubby一个开源实现

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
分布式计算 算法 搜索推荐
阿里巴巴内部:2022年全技术栈PPT分享(架构篇+算法篇+大数据)
我只截图不说话,PPT大全,氛围研发篇、算法篇、大数据、Java后端架构!除了大家熟悉的交易、支付场景外,支撑起阿里双十一交易1682亿元的“超级工程”其实包括以下但不限于客服、搜索、推荐、广告、库存、物流、云计算等。 Java核心技术栈:覆盖了JVM、锁、并发、Java反射、Spring原理、微服务、Zookeeper、数据库、数据结构等大量知识点。 大数据:Spark、Hadoop
|
8月前
|
分布式计算 算法 搜索推荐
阿里巴巴内部:全技术栈PPT分享(架构篇+算法篇+大数据)
我只截图不说话,PPT大全,氛围研发篇、算法篇、大数据、Java后端架构!除了大家熟悉的交易、支付场景外,支撑起阿里双十一交易1682亿元的“超级工程”其实包括以下但不限于客服、搜索、推荐、广告、库存、物流、云计算等。 Java核心技术栈:覆盖了JVM、锁、并发、Java反射、Spring原理、微服务、Zookeeper、数据库、数据结构等大量知识点。 大数据:Spark、Hadoop
|
分布式计算 算法 搜索推荐
阿里巴巴内部:全技术栈PPT分享(架构篇+算法篇+大数据)
我只截图不说话,PPT大全,氛围研发篇、算法篇、大数据、Java后端架构!除了大家熟悉的交易、支付场景外,支撑起阿里双十一交易1682亿元的“超级工程”其实包括以下但不限于客服、搜索、推荐、广告、库存、物流、云计算等。 Java核心技术栈:覆盖了JVM、锁、并发、Java反射、Spring原理、微服务、Zookeeper、数据库、数据结构等大量知识点。 大数据:Spark、Hadoop
|
存储 人工智能 供应链
新时代火热技术栈:大数据->人工智能(AI)->区块链
新时代火热技术栈:大数据->人工智能(AI)->区块链
新时代火热技术栈:大数据->人工智能(AI)->区块链
|
SQL 存储 分布式计算
想了解大数据的鼻祖Hadoop技术栈,这里有一份优质书单推荐!
如何用形象的比喻描述大数据的技术生态?Hadoop、Hive、Spark 之间是什么关系?对于大部分人来说都是傻傻分不清楚。
|
存储 SQL NoSQL
实用干货!大数据入门的常用技术栈全在这里了
大数据自 2009 年走向人们的视野,亦如所有新技术的发展,经历了一波炒作后,由风口回归理性发展。我们可以看到,随着 IOT 技术的发展和成熟,以及 5G 业务的全面铺开,数据规模还将持续增长。新晋技术风口 AI、区块链、RPA 的发展也都离不开大数据技术。大数据技术将作为一项基础技术,应用在各个角落。
2149 0
实用干货!大数据入门的常用技术栈全在这里了
|
2天前
|
SQL 数据可视化 大数据
从数据小白到大数据达人:一步步成为数据分析专家
从数据小白到大数据达人:一步步成为数据分析专家
125 92
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
588 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
72 2
|
18天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试

热门文章

最新文章