【资源分享】esrally:Elasticsearch 官方压测工具测试数据共享(国内)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 自从上篇发布的关于“【最佳实践】esrally:Elasticsearch 官方压测工具及运用详解”后,不停有同学询问使用中遇到的问题,尤其是测试数据存储在国外 aws 上,导致下载极慢的情况出现。为了让大家快速上手使用 esrally,我 build 了一个可用的 docker 镜像,将 13GB 的测试数据拉取到国内的存储上,通过百度网盘的方式分享给大家。大家只要按照下面简单的几步操作就可以顺畅地使用 esrally 来进行相关测试了。

作者介绍

魏彬,普翔科技 CTO,开源软件爱好者,中国第一位 Elastic 认证工程师,《Elastic日报》和 《ElasticTalk》社区项目发起人,被 elastic 中国公司授予 2019 年度合作伙伴架构师特别贡献奖。对 Elasticsearch、Kibana、Beats、Logstash、Grafana 等开源软件有丰富的实践经验,为零售、金融、保险、证券、科技等众多行业的客户提供过咨询和培训服务,帮助客户在实际业务中找准开源软件的定位,实现从 0 到 1 的落地、从 1 到 N 的拓展,产生实际的业务价值。

上篇文章:【最佳实践】esrally:Elasticsearch 官方压测工具及运用详解

操作步骤

话不多说、先上菜

1、通过以下命令,拉取镜像

docker pull rockybean/esrally

2、下载数据文件 链接:https://pan.baidu.com/s/123zgferlhWflOj7qJxFD1w

3、进入下载后的文件夹 rally_track,执行如下命令开始测试

docker run -it -v $(PWD):/root/track rockybean/esrally esrally race --track-path=/root/track/logging --offline --pipeline=benchmark-only --target-hosts=192.168.1.105:9200

打完收工!

要点介绍

关于数据文件

esrally 自带的测试数据即为 rally_track 文件夹中的内容,主要包括:

1、Geonames(geonames): for evaluating the performance of structured data.

2、Geopoint(geopoint): for evaluating the performance of geo queries.

3、Percolator(percolator): for evaluating the performance of percolation queries.

4、PMC(pmc): for evaluating the performance of full text search.

5、NYC taxis(nyc_taxis): for evaluating the performance for highly structured data.

6、Nested(nested): for evaluating the performance for nested documents.

7、Logging(logging): for evaluating the performance of (Web) server logs.

8、noaa(noaa): for evaluating the performance of range fields.

可以根据自己的需要下载对应的测试数据,不必下载全部,保证对应文件夹下载完全即可。

命令解释

docker 相关

docker run -it rockybean/esrally esrally 为执行的 esrally 命令,-v $(PWD):/root/track是将 rally_docker 文件夹映射到 docker 容器中,$(PWD)是获取当前目录的意思,所以在此前要 cd 到 rally_docker 目录,当然你写全路径也是没有问题的。
esrally 的 docker 镜像比较简单,可以参看 github 项目介绍。

esrally 相关

该镜像是通过自定义 track 的方式来加载数据,所以命令行中用到 --track=/root/track/logging 的命令行参数。注意这里的 /root/track 即上面我们绑定到容器的目录,更换 logging为其他的数据集名称即可加载其他的测试数据。
该容器只支持测试第三方 es 集群,即 --pipeline=benchmark-only 模式。这应该也是最常见的压测需求了。
愉快地去玩耍吧!

声明:本文由原文《三步上手 esrally 完成 elasticsearch 压测任务》作者“魏彬”授权转载,对未经许可擅自使用者,保留追究其法律责任的权利。


image.png

阿里云Elastic Stack】100%兼容开源ES,独有9大能力,提供免费X-pack服务(单节点价值$6000)

相关活动


更多折扣活动,请访问阿里云 Elasticsearch 官网

阿里云 Elasticsearch 商业通用版,1核2G ,SSD 20G首月免费
阿里云 Logstash 2核4G首月免费


image.png

image.png

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
19天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
34 11
|
21天前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
43 10
|
3月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
70 4
|
4月前
|
缓存 Java 测试技术
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
使用JMeter对项目各个接口进行压力测试,并对前端进行动静分离优化,优化三级分类查询接口的性能
134 10
谷粒商城笔记+踩坑(11)——性能压测和调优,JMeter压力测试+jvisualvm监控性能+资源动静分离+修改堆内存
|
3月前
|
自然语言处理 搜索推荐 关系型数据库
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
这篇文章是关于Elasticsearch全文搜索引擎的学习指南,涵盖了基本概念、命令风格、索引操作、分词器使用,以及数据的增加、修改、删除和查询等操作。
43 0
elasticsearch学习六:学习 全文搜索引擎 elasticsearch的语法,使用kibana进行模拟测试(持续更新学习)
|
3月前
|
Web App开发 JavaScript Java
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
这篇文章是关于如何使用Spring Boot整合Elasticsearch,并通过REST客户端操作Elasticsearch,实现一个简单的搜索前后端,以及如何爬取京东数据到Elasticsearch的案例教程。
280 0
elasticsearch学习五:springboot整合 rest 操作elasticsearch的 实际案例操作,编写搜索的前后端,爬取京东数据到elasticsearch中。
|
3月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
126 1
|
4月前
|
存储 SQL 缓存
数据库测试|Elasticsearch和ClickHouse的对决
由于目前市场上主流的数据库有许多,这次我们选择其中一个比较典型的Elasticsearch来和ClickHouse做一次实战测试,让大家更直观地看到真实的比对数据,从而对这两个数据库有更深入的了解,也就能理解为什么我们会选择ClickHouse。
数据库测试|Elasticsearch和ClickHouse的对决
|
5月前
|
网络协议 Java API
SpringBoot整合Elasticsearch-Rest-Client、测试保存、复杂检索
这篇文章介绍了如何在SpringBoot中整合Elasticsearch-Rest-Client,并提供了保存数据和进行复杂检索的测试示例。
SpringBoot整合Elasticsearch-Rest-Client、测试保存、复杂检索
|
3月前
|
消息中间件 监控 关系型数据库
MySQL数据实时同步到Elasticsearch:技术深度解析与实践分享
在当今的数据驱动时代,实时数据同步成为许多应用系统的核心需求之一。MySQL作为关系型数据库的代表,以其强大的事务处理能力和数据完整性保障,广泛应用于各种业务场景中。然而,随着数据量的增长和查询复杂度的提升,单一依赖MySQL进行高效的数据检索和分析变得日益困难。这时,Elasticsearch(简称ES)以其卓越的搜索性能、灵活的数据模式以及强大的可扩展性,成为处理复杂查询需求的理想选择。本文将深入探讨MySQL数据实时同步到Elasticsearch的技术实现与最佳实践。
257 0

热门文章

最新文章

相关产品

  • 检索分析服务 Elasticsearch版