阿里云机器学习平台PAI使用简明教程(二)

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 前面在阿里云机器学习平台PAI使用简明教程介绍了使用DataStudio在maxcompute中手动导入数据进行PAI Studio模型的搭建、训练及在线部署调用。实际在使用过程中使用者的数据可能在其它的数据源,目前PAI Studio并不支持直接接入第三方数据源。

概述

前面在 阿里云机器学习平台PAI使用简明教程介绍了使用DataStudio在maxcompute中手动导入数据进行PAI Studio模型的搭建、训练及在线部署调用。实际在使用过程中使用者的数据可能在其它的数据源,目前PAI Studio并不支持直接接入第三方数据源。官方推荐的方式是使用Dataworks的数据集成功能,将数据通过离线同步将数据导入到maxcompute中,然后进行后续操作。本文以Mysql数据库为例,结合GBDT二分类算法组件,演示相关过程的操作流程。

Step By Step


1、Dataworks 数据集成
  • 1.1 配置数据源

_

_

白名单
目前支持的数据源
  • 1.2 Mysql数据库表
/*------- CREATE SQL---------*/
CREATE TABLE `paitable` (
  `f0` double DEFAULT NULL,
  `f1` double DEFAULT NULL,
  `f2` double DEFAULT NULL,
  `f3` double DEFAULT NULL,
  `label` bigint(20) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8
INSERT INTO `paitable` VALUES(1,0,0,0,0);
INSERT INTO `paitable` VALUES(0,1,0,0,0);
INSERT INTO `paitable` VALUES(0,0,1,0,1);
INSERT INTO `paitable` VALUES(0,0,0,1,1);
INSERT INTO `paitable` VALUES(1,0,0,0,0);
INSERT INTO `paitable` VALUES(0,1,0,0,0);

SELECT * FROM paitable;

_

  • 1.3 maxcompute数据表
drop table if exists dual;
create table dual (f0 DOUBLE ,f1 DOUBLE ,f2 DOUBLE ,f3 DOUBLE,label BIGINT);

特别提示 特别提示 特别提示

目前因为PAI Studio兼容的数据类型有限,所以在maxcompute中建表的数据类型只能是如下几种:
bigint
double
decimal
boolean
datatime
string
本身maxcompute支持的数据类型很多,如果表中字段包含了其它类型,在PAI Studio 读数据表组件查询不到相关的表。

1.4 配置离线同步

_

_

_

1.5 离线同步

_

2020-02-29 13:00:13.384 [job-226408512] INFO  JobContainer -
任务启动时刻                    : 2020-02-29 12:59:49
任务结束时刻                    : 2020-02-29 13:00:13
任务总计耗时                    :                 24s
任务平均流量                    :                1B/s
记录写入速度                    :              0rec/s
读出记录总数                    :                   6
读写失败总数                    :                   0

_


2 PAI Studio GBDT二分类组件使用

2.1 模块搭建及参数配置

_

_

_

_

2.2 训练及结果查看

_

_

_

参考链接

阿里云机器学习平台PAI使用简明教程

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
5月前
|
PyTorch 调度 算法框架/工具
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
DLC任务Pytorch launch_agent Socket Timeout问题源码分析与解决方案
228 18
阿里云PAI-DLC任务Pytorch launch_agent Socket Timeout问题源码分析
|
5月前
|
数据可视化 Rust 机器学习/深度学习
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
mlop.ai 是首个为国区用户优化的机器学习工具,全栈免费开源,是主流付费解决方案 ClearML/WandB 的开源平替。常规实验追踪的工具经常大幅人为降速,mlop因为底层为Rust代码,能轻松支持高频数据写入。如需更多开发者帮助或企业支持,敬请联系cn@mlop.ai
271 12
mlop.ai 无脑使用教程 (机器学习工具 WandB/ClearML 的首个国区开源平替)
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
5月前
|
缓存 并行计算 测试技术
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
阿里云PAI-全模态模型Qwen2.5-Omni-7B推理浅试
1098 12
|
6月前
|
人工智能 自然语言处理 运维
Qwen3 全尺寸模型支持通过阿里云PAI-ModelGallery 一键部署
Qwen3 是 Qwen 系列最新一代的大语言模型,提供了一系列密集(Dense)和混合专家(MOE)模型。目前,PAI 已经支持 Qwen3 全系列模型一键部署,用户可以通过 PAI-Model Gallery 快速开箱!
|
7月前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
云上一键部署通义千问 QwQ-32B 模型,阿里云 PAI 最佳实践
3月6日阿里云发布并开源了全新推理模型通义千问 QwQ-32B,在一系列权威基准测试中,千问QwQ-32B模型表现异常出色,几乎完全超越了OpenAI-o1-mini,性能比肩Deepseek-R1,且部署成本大幅降低。并集成了与智能体 Agent 相关的能力,够在使用工具的同时进行批判性思考,并根据环境反馈调整推理过程。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署 QwQ-32B,本实践带您部署体验专属 QwQ-32B模型服务。
|
8月前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
8月前
|
人工智能 自然语言处理 网络安全
基于阿里云 Milvus + DeepSeek + PAI LangStudio 的低成本高精度 RAG 实战
阿里云向量检索服务Milvus版是一款全托管向量检索引擎,并确保与开源Milvus的完全兼容性,支持无缝迁移。它在开源版本的基础上增强了可扩展性,能提供大规模AI向量数据的相似性检索服务。凭借其开箱即用的特性、灵活的扩展能力和全链路监控告警,Milvus云服务成为多样化AI应用场景的理想选择,包括多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等。您还可以利用开源的Attu工具进行可视化操作,进一步促进应用的快速开发和部署。
|
8月前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
146 0

热门文章

最新文章