在量化交易中应用卷积神经网络CNN做时间序列预测

简介: 在量化交易中使用CNN做时间序列预测的理论,以及实现框架

量化交易中,最直接的判断策略是根据历史的价格走势或者交易量的变化,来预测未来的价格。这一点对于传统看K线的形态派,和现在使用机器学习的炼丹派应该都是一样的。对价格预测的有效性基于两个假设:

  1. 市场参与者的某种交易心理或者说情绪,会形成特定模式的下单流,从结果来看,就是造成特定的交易量演变以及价格走势。也就是说价格波动不是一个完全的随机游走过程,而是前后关联的。
  2. 市场参与者不会在某个时间点全部离场而进入全新的交易者,而是一个逐渐加入/退出的过程。这导致一个模式不会马上消失,而是逐渐演变。也就是说价格波动的形态是会重复发生的。

通过机器学习方法进行的量化预测,本质上就是先基于交易量和价格这两个市场行为的结果,找出潜在的交易心理/模式,当我们找到的模式在未来某个时间点再重现的时候,我们就可以从中获利。这个过程有点像自然语言处理,比如机器翻译要把中文翻译为英文,第一步是找出中文背后的语义,然后在把语义变为英文,这背后的语义就跟我们所说的交易模式一样,不可描述。

LSTM

时间序列预测,这个是一个典型的序列问题,直观的可以用循环神经网络(RNN, Recurrent Neural Networks)解决,RNN应用了序列的上下文关系。多数情况都会使用长短期记忆(LSTM,Long Short-Term Memory)网络,一种特殊的RNN。RNN在 语音识别、机器翻译这些场景应用很广泛。RNN的结构:

RNN_longtermdependencies

原始RNN的缺点是无法实现长期依赖(Long-Term Dependencies),也就是说随着时间序列的增长,序列的开头对于后面的作用几乎不存在了。LSTM是这针对这个问题进行优化的RNN变种,它可以保存几十个步骤以前的信息。LSTM的实现细节可以参考Understanding LSTM Networks -- colah's blog

但是在金融时间序列的问题上,时间序列的会很长,可能上千个神经元,LSTM无法解决这么久远的信息依赖。另外一个问题是RNN模型的训练过程的效率非常低,因为同一层的神经元计算是顺序进行的,这个顺序没法实现并行化。现在最新的研究也是正在放弃RNN/LSTM,比如 ResNet 和 Attention。

CNN

卷积神经网络(CNN,Convolutional Neural Networks)在计算机视觉中应用非常广泛,其最基本的理念就是对图像进行特征抽取。特征抽取是基于图像的两个性质:局部相关性和空间不变性。先说局部相关性,图像的本质是一个像素点组成的矩阵,单个像素与周围相邻的像素是有关联的,这种关联可能是他们共同组成图像中的一个结构,也叫特征。而空间不变性,就是指在对图像进行变换之后,一系列列相邻的像素点组成的特征依然存在。我们先看一下一个完整的CNN框架,这里是的目标是识别图片中的数字:

CNN_jpeg

CNN里面主要包含两个操作:卷积和池化。池化就是对图片数据进行采样,是一个相对简单的过程。卷积操作才是特征提取的核心。先要定义一个卷积核,不同的卷积核定义的是想要提取的目标特征特征,下面是卷积运算的计算过程:

Converlution

常用的卷积核定义以及特征提取的效果:

Conv

CNN的具体细节参考一下两篇博文,上文的图片也是来自于这两篇文章:

对于量化交易中假设时间序列数据中存在特定的模式,可以关联到上文的图片特征,理解为时间维度上的局部相关性,也就是说相邻的时间点组成了一个模式,我们可以通过CNN把潜在的模式提取出来。这个应用从直观上不是很好理解,因为从时间序列的角度来说,点与点之间是有先后的顺序关系的,也就一般所说的上下文,但是在CNN中,这个上下文信息被平面化了,认为所有的历史信息对于当前点的影响都是等价的。基于这一点,也有将CNN和LSTM结合在一起使用的工作:Twitter Sentiment Analysis using combined LSTM-CNN Models。当然从卷积运算的角度来看,卷积核探测到的模式其实是确定了其中的相对位置关系的,这也可以说是上下文信息的一种变形。

使用CNN相对于LSTM最大的优点是它可以运用并行化计算,计算效率远比LSTM高,从而我们可以把网络做的更深。

实现

我们先把问题进行转化,其实我们可以把我们的目标弱化,我们并不需要知道未来某一时刻价格精确的位置,而是只需要知道价格波动在未来是否达到了我们可以盈利的预期值,也就是价格是否涨/跌超过一个阈值,这样原始的问题我们形式化为一个分类问题。

下图是借用CNN处理文本处理的框架,并在图上做了修改,A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification

CNN_TimeSeries

在这个框架中,卷积运算的维度从上文介绍的图片分类的2维空间信息转变为1维时间信息。而横向(d=5)的数据是同一类别的量化因子,作为描述同一时间点的原始特征值。比如基于价格计算出来的不同周期的MACD,也可以直接是价格的OHLC,只要保证不同列的因子数据是可比较的就行。多个不同的大小的核,表示想要探测不同时间长度的模式。不同类型的因子可以通过上述的框架中,最后一步softmax之前,把所有因子中提取出来的特征值拼接在一起,最后做分类。这个模型是借用文本分类的框架,为了方便说明在在1维数据中使用CNN的过程。

PyTorch中的一维卷积nn.Conv1d就可以完成时间序列上的卷积运算,参考pytorch之nn.Conv1d详解

class Conv1d(_ConvNd):
    """
    in_channels (int): 输入通道数,也就是上图中的d=5
    out_channels (int): 卷积产生的通道。有多少个out_channels,就需要多少个1维卷积
    kernel_size (int or tuple): 卷积核的大小,上图3组核的的大小分别为4、5、6
    stride (int or tuple, optional): 卷积步长,每一次卷积计算之间的跨度,默认1
    padding (int or tuple, optional): 输入的每一条边补充0的层数,默认0
    dilation (int or tuple, optional): 卷积核元素之间的间距
    groups (int, optional): 输入通道到输出通道的阻塞连接数
    bias (bool, optional): 是否添加偏置项
    """

用PyTorch定义一个处理时间序列的CNN网络:

import torch
import torch.nn as nn

class TimeSeriesCNN(nn.Module):
    def __init__(self):
        super(TimeSeriesCNN, self).__init__()
        kernel_sizes = [4, 5, 6]
        ts_len = 7 # length of time series
        hid_size = 1
        self.convs = nn.ModuleList([
            nn.Sequential(
                nn.Conv1d(
                    in_channels=5,
                    out_channels=2,
                    kernel_size=kernel_size,
                ),
                nn.ReLU(),
                nn.MaxPool1d(kernel_size=ts_len - kernel_size + 1))
            for kernel_size in kernel_sizes
        ])
        self.fc = nn.Linear(
            in_features=hid_size * len(kernel_sizes),
            out_features=3,
        )

    def forward(self, x):
        output = [conv(x) for conv in self.convs]
        output = torch.cat(output, dim=1)
        output = output.view(output.size(1), -1)
        output = self.fc(output)
        return output
目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
35 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
274 55
|
23天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
159 80
|
11天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
7天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
16天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
19天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
378 7