经典神经网络架构参考 v1.0(2)

简介: 经典神经网络架构参考 v1.0

经典神经网络架构参考 v1.0(1)https://developer.aliyun.com/article/1489283

块 #6 #7 #8:

digraph AlexNetL678 {
  rankdir=BT
    node [
    style=filled, 
    color=Black
    fontcolor=White, 
    fillcolor="#30638e", 
    fontname="SimHei",
    fontsize=32,
    width=5, height=2,
    shape="box",
  ]
    featmap52 [label="[BatchSize,\nW=6, H=6, C=128x2]", shape="Mrecord"]
    reshape [label="reshape([4096])"]
    linear6 [label="Linear6\n[4096, 4096]"]
    relu6 [label="Relu"]
    dropout6 [label="Dropout"]
    linear7 [label="Linear7\n[4096, 4096]"]
    relu7 [label="Relu"]
    dropout7 [label="Dropout"]
    linear8 [label="Linear7\n[4096, 1000]"]
    softmax [label="Softmax"]
    oup [label="输出\n[BatchSize, 1000]", shape="Mrecord"]
    featmap52 -> reshape -> linear6 -> relu6 -> dropout6 ->
        linear7 -> relu7 -> dropout7 -> linear8 -> softmax -> oup
}

3.3 VGG16

主体:

digraph VGG16 {
  rankdir=BT
    node [
    style=filled, 
    color=Black
    fontcolor=White, 
    fillcolor="#30638e", 
    fontname="SimHei",
    fontsize=32,
    width=5, height=2,
    shape="box",
  ]
    inp [label="输入\n[BatchSize,\nW=224, H=224, C=3]", shape="Mrecord"]
  convblock1 [label="ConvBlock1\n[In=3, Out=64]"]
  featmap1 [label="[BatchSize\nW=112, H=112, C=64]", shape="Mrecord"]
  convblock2 [label="ConvBlock2\n[In=64, Out=128]"]
  featmap2 [label="[BatchSize\nW=56, H=56, C=128]", shape="Mrecord"]
  convblock3 [label="ConvBlock3\n[In=128, Out=256]"]
  featmap3 [label="[BatchSize\nW=28, H=28, C=256]", shape="Mrecord"]
  convblock4 [label="ConvBlock4\n[In=256, Out=512]"]
  featmap4 [label="[BatchSize\nW=14, H=14, C=512]", shape="Mrecord"]
  convblock5 [label="ConvBlock5\n[In=512, Out=512]"]
  featmap5 [label="[BatchSize\nW=7, H=7, C=512]", shape="Mrecord"]
  reshape [label="reshape([7x7x512])"]
  linear1 [label="Linear1\n[7x7x512, 4096]"]
  relu1 [label="Relu"]
  linear2 [label="Linear2\n[4096, 4096]"]
  relu2 [label="Relu"]
  linear3 [label="Linear3\n[4096, 1000]"]
  relu3 [label="Relu"]
  linear4 [label="Linear4\n[1000, 1000]"]
  softmax [label="Softmax"]
  oup [label="输出\n[BatchSize, 1000]", shape="Mrecord"]
  inp -> convblock1 -> featmap1 -> convblock2 -> featmap2 ->
    convblock3 -> featmap3 -> convblock4 -> featmap4 -> 
    convblock5 -> featmap5 -> reshape -> linear1 -> relu1 ->
    linear2 -> relu2 -> linear3 -> relu3 -> linear4 -> softmax ->
    oup
}

卷积块:

digraph VGG16ConvBlock {
  rankdir=BT
    node [
    style=filled, 
    color=Black
    fontcolor=White, 
    fillcolor="#30638e", 
    fontname="SimHei",
    fontsize=32,
    width=5, height=2,
    shape="box",
  ]
    inp [label="输入\n[BatchSize, W=BlockW,\n H=BlockH, C=BlockIn]", shape="Mrecord"]
  conv1 [label="Conv2D#1\n[K=3, P=1,\n In=BlockIn,\n Out=BlockOut]"]
  conv2 [label="Conv2D#2\n[K=3, P=1,\n In=BlockOut,\n Out=BlockOut]"]
  relu  [label="relu"]
  maxpool [label="MaxPool2D\n[K=2, S=2]"]
    oup [label="输出\n[BatchSize,\n W=BlockW/2,\n H=BlockH/2,\n C=BlockOut]", shape="Mrecord"]
  inp -> conv1 -> conv2 -> relu -> maxpool -> oup
}

3.4 ResNet18

主体:

digraph ResNet18 {
  rankdir=BT
    node [
    style=filled, 
    color=Black
    fontcolor=White, 
    fillcolor="#30638e", 
    fontname="SimHei",
    fontsize=32,
    width=5, height=2,
    shape="box",
  ]
    inp [label="输入\n[BatchSize,\nW=224, H=224, C=3]", shape="Mrecord"]
    conv0 [label="Conv2D#0\n[K=7, S=2, P=3, In=3, Out=64]"]
    maxpool0 [label="MaxPool2D#0\n[K=3, S=2, P=1]"]
    featmap0 [label="[BatchSize,\nW=56, H=56, C=64]", shape="Mrecord"]
  convblock1 [label="ConvBlock1\n[C=64]"]
  convblock2 [label="ConvBlock2\n[C=64]"]
    featmap2 [label="[BatchSize,\nW=56, H=56, C=64]", shape="Mrecord"]
    downconvblock3 [label="DownConvBlock3\n[In=64, Out=128]"]
  convblock4 [label="ConvBlock4\n[C=128]"]
    featmap4 [label="[BatchSize,\nW=28, H=28, C=128]", shape="Mrecord"]
    downconvblock5 [label="DownConvBlock5\n[In=128, Out=256]"]
  convblock6 [label="ConvBlock6\n[C=256]"]
    featmap6 [label="[BatchSize,\nW=14, H=14, C=256]", shape="Mrecord"]
    downconvblock7 [label="DownConvBlock7\n[In=256, Out=512]"]
  convblock8 [label="ConvBlock8\n[C=512]"]
    featmap8 [label="[BatchSize,\nW=7, H=7, C=512]", shape="Mrecord"]
    avgpool [label="AvgPool2D\n[K=7, S=7]"]
    featmap9 [label="[BatchSize,\nW=1, H=1, C=512]", shape="Mrecord"]
    reshape [label="reshape([512])"]
    linear [label="Linear\n[512, 1000]"]
    softmax [label="Softmax"]
  oup [label="输出\n[BatchSize, 1000]", shape="Mrecord"]
    inp -> conv0 -> maxpool0 -> featmap0 -> convblock1 -> convblock2 -> 
        featmap2 -> downconvblock3 -> convblock4 -> featmap4 ->
        downconvblock5 -> convblock6 -> featmap6 ->
        downconvblock7 -> convblock8 -> featmap8 -> avgpool ->
        featmap9 -> reshape -> linear -> softmax -> oup
}

卷积块:

digraph ResNet18ConvBlock {
  rankdir=BT
    node [
    style=filled, 
    color=Black
    fontcolor=White, 
    fillcolor="#30638e", 
    fontname="SimHei",
    fontsize=32,
    width=5, height=2,
    shape="box",
  ]
    
    inp [label="输入\n[BatchSize,\nW=BlockW, \nH=BlockH, C=BlockC]", shape="Mrecord"]
    conv1 [label="Conv2D#1\n[K=3, P=1,\n In=BlockC,\n Out=BlockC]"]
    relu1 [label="Relu"]
    conv2 [label="Conv2D#2\n[K=3, P=1,\n In=BlockC,\n Out=BlockC]"]
    add   [label="+"]
    relu2 [label="Relu"]
    inp -> conv1 -> relu1 -> conv2 -> add -> relu2 -> oup
    inp -> add
}

经典神经网络架构参考 v1.0(3)https://developer.aliyun.com/article/1489285

相关文章
|
8天前
|
存储 机器学习/深度学习 数据库
阿里云服务器X86/ARM/GPU/裸金属/超算五大架构技术特点、场景适配参考
在云计算技术飞速发展的当下,云计算已经渗透到各个行业,成为企业数字化转型的关键驱动力。选择合适的云服务器架构对于提升业务效率、降低成本至关重要。阿里云提供了多样化的云服务器架构选择,包括X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等。本文将深入解析这些架构的特点、优势及适用场景,以供大家了解和选择参考。
160 61
|
3月前
|
机器学习/深度学习 计算机视觉 iOS开发
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
180 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
|
1天前
|
Cloud Native 区块链 数据中心
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
Arista CloudEOS 4.32.2F - 云网络基础架构即代码
16 1
|
2月前
|
机器学习/深度学习 测试技术 网络架构
FANformer:融合傅里叶分析网络的大语言模型基础架构
近期大语言模型(LLM)的基准测试结果显示,OpenAI的GPT-4.5在某些关键评测中表现不如规模较小的模型,如DeepSeek-V3。这引发了对现有LLM架构扩展性的思考。研究人员提出了FANformer架构,通过将傅里叶分析网络整合到Transformer的注意力机制中,显著提升了模型性能。实验表明,FANformer在处理周期性模式和数学推理任务上表现出色,仅用较少参数和训练数据即可超越传统Transformer。这一创新为解决LLM扩展性挑战提供了新方向。
68 5
FANformer:融合傅里叶分析网络的大语言模型基础架构
|
2月前
|
存储 弹性计算 运维
阿里云通用算力型U1实例怎么样?u1实例技术架构、场景适配与优惠价格参考
阿里云服务器ECS 通用算力型u1实例2核4G,5M固定带宽,80G ESSD Entry盘,企业用户专享优惠价格199元1年,很多用户关心这个款云服务器怎么样?阿里云通用算力型U1实例自推出以来,凭借独特的"均衡算力+智能调度"设计理念,在IaaS市场开辟出差异化的竞争赛道。本文将通过技术架构解析、典型场景适配分析、全生命周期成本测算三个维度,全面解构这款热门云服务器实例的核心价值,以供参考和选择。
|
2月前
|
存储 机器学习/深度学习 应用服务中间件
阿里云服务器架构解析:从X86到高性能计算、异构计算等不同架构性能、适用场景及选择参考
当我们准备选购阿里云服务器时,阿里云提供了X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器以及高性能计算等多种架构,每种架构都有其独特的特点和适用场景。本文将详细解析这些架构的区别,探讨它们的主要特点和适用场景,并为用户提供选择云服务器架构的全面指南。
432 18
|
2月前
|
安全 容灾 网络安全
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
深度用云——释放企业潜能 | 网络先行——阿里云网络卓越架构白皮书正式发布
|
3月前
|
机器学习/深度学习 计算机视觉 iOS开发
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
YOLOv11改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构
185 12
|
3月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索:自动化设计神经网络的方法
在人工智能(AI)和深度学习(Deep Learning)快速发展的背景下,神经网络架构的设计已成为一个日益复杂而关键的任务。传统上,研究人员和工程师需要通过经验和反复试验来手动设计神经网络,耗费大量时间和计算资源。随着模型规模的不断扩大,这种方法显得愈加低效和不够灵活。为了解决这一挑战,神经架构搜索(Neural Architecture Search,NAS)应运而生,成为自动化设计神经网络的重要工具。
|
4月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器ECS架构区别及选择参考:X86计算、ARM计算等架构介绍
在我们选购阿里云服务器的时候,云服务器架构有X86计算、ARM计算、GPU/FPGA/ASIC、弹性裸金属服务器、高性能计算可选,有的用户并不清楚他们之间有何区别,本文主要简单介绍下这些架构各自的主要性能及适用场景,以便大家了解不同类型的架构有何不同,主要特点及适用场景有哪些。
609 10

热门文章

最新文章