Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)

简介: Python对中国电信消费者特征预测:随机森林、朴素贝叶斯、神经网络、最近邻分类、逻辑回归、支持向量回归(SVR)

随着大数据概念的兴起,以数据为基础的商业模式越来越流行,用所收集到的因素去预测用户的可能产生的行为,并根据预测做出相应反应成为商业竞争的核心要素之一


单纯从机器学习的角度来说,做到精准预测很容易,但是结合具体业务信息并做出相应反应并不容易。预测精确性是核心痛点。


解决方案


任务/目标

根据所收集到的用户特征用机器学习方法对特定的属性做预测。

数据源准备

数据质量低或者缺失,会影响模型预测效果。在建立的一个合理的模型之前,对数据要进行清理。对于数据中的连续变量和离散变量进行标准化和因子化处理,以使后面的预测更加准确。

因子化标准化处理

首先将数据进行属性分类,分为名义变量('性别', '归属地', '换机频率', '终端品牌', '终端类型', '最近使用操作系统偏好','渠道类型描述', '是否欠费', '产品大类', '产品分类')和间隔变量('年龄','在网时长','上网流量使用','漫游流量使用', '总收入','增值收入','流量收入','短信收入','彩信收入','语音收入')。

将数据处理成算法容易处理模式:

  1. 朴素贝叶斯数据集

朴素贝叶斯方法需要离散化数据,于是按照分为点对于连续数据进行离散化处理。然后将所有的离散变量进行因子化。

  1. 神经网络,支持向量机与最近邻所需数据:处理以保证在一个数量级

为方便起见,用one-hot编码因子变量。对于连续变量,将数据映射到0,1之间 且不改变分布。

  1. 随机森林与回归所需数据:直接使用因子化的原始数据。


划分训练集和测试集


考虑到最终模型会在已知某些变量的同时,预测一些未知的特征,为了更真实的测试模型效果,将数据集分为分训练集和测试集。


建模


用其他用户特征,用训练集进行调参,预测用户“是否欠费”这个属性。

1. 随机森林

用随机的方式建立一个森林,森林由很多决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。

两个主要参数:n_estimators: 多少树 max_features: 每个树随机选择多少特征

比较不同参数预测结果的neg_log_loss,选择最优的参数(score最大的)

2. 朴素贝叶斯

3. 神经网络

在PyTorch框架下面进行网络的搭建及运算

需要调节的参数:batch_size=[200,500,1000], 神经元个数=[16,32,64,128]

学习率=[0.01,0.005,0.001,0.0005,0.0001,0.00005,0.00001] 再微调,epoch=[10,20,30,40,50,60]

调参策略,第一调到最优后选择下一个进行调参,并不进行网格搜索

(a) 数据形式调整并进行小批次数据训练(批训练):每次选择1000数据集进行拟合,避免局部最优。

(b) 模型建立:我们采用了输入层+两层隐藏层+输出层,的三层神经网络,确定三层隐藏层的个数:我们比较32,64 逐一变化,择取最优。

(c) 训练网络:优化器:采用了Adam而不是简单的SGD,主要也是避免局部最优的问题。分类问题我们采用了普遍使用的交叉熵损失损失,但是与普遍的交叉熵相比,由于数据过于不平衡,因此我们增加了占比较少的数据的损失权重

4. 最近邻分类

最近邻分类:主要需要确定n_neighbors,我们比较n_neighbors=3,5,7,9情况下neg_log_loss

5. 逻辑回归:这里主要也是需要对变量进行筛选

由于数据非常不平衡,因此我们使用AUC作为标准进行衡量。逐个遍历自变量并将自变量名连接起来,升序排序accuracy值,最新的分数等于最好的分数。

6. 支持向量回归(SVR):使用网格搜索法最佳C值和核函数

模型准确性判定:

准确度/查准率/查全率


点击标题查阅往期内容


数据分享|R语言决策树和随机森林分类电信公司用户流失churn数据和参数调优、ROC曲线可视化


01

02

03

04

混淆矩阵


ROC曲线


在此案例中,从准确度来看,随机森林模型的分类最好。从查准率来看,神经网络模型的分类最好。从查全率来看,逻辑回归模型的分类效果最好。同理,由上图可知,在ROC曲线下对于“是否欠费”这个因变量,神经网络模型的分类效果最好,模型的ROC曲线下面积最高,拟合最优。其余模型的拟合效果显著。

但事实上,评估效果不能只看统计数据,要综合考虑现实情况,预测精度,模型可解释性和客户偏好等因素综合考虑。预测结果仅作为参考一个权重值,还需要专家意见,按照一定的权重来计算


相关文章
|
2月前
|
编解码 异构计算
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
150 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
2月前
|
计算机视觉 Perl
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
73 10
RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
2月前
|
机器学习/深度学习 编解码 计算机视觉
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
107 10
RT-DETR改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
|
2月前
|
编解码 异构计算
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
515 7
YOLOv11改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
|
4月前
|
机器学习/深度学习 网络架构
揭示Transformer重要缺陷!北大提出傅里叶分析神经网络FAN,填补周期性特征建模缺陷
近年来,神经网络在MLP和Transformer等模型上取得显著进展,但在处理周期性特征时存在缺陷。北京大学提出傅里叶分析网络(FAN),基于傅里叶分析建模周期性现象。FAN具有更少的参数、更好的周期性建模能力和广泛的应用范围,在符号公式表示、时间序列预测和语言建模等任务中表现出色。实验表明,FAN能更好地理解周期性特征,超越现有模型。论文链接:https://arxiv.org/pdf/2410.02675.pdf
171 68
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
揭示Transformer周期建模缺陷!北大提出新型神经网络FAN,填补周期性特征建模能力缺陷
北京大学研究团队发现,Transformer等主流神经网络在周期特征建模方面存在缺陷,如记忆数据模式而非理解内在规律,导致泛化能力受限。为此,团队提出基于傅里叶分析的Fourier Analysis Network(FAN),通过显式建模周期性特征,提升模型的理解和预测能力,减少参数和计算量,并在多个实验中验证其优越性。论文链接:https://arxiv.org/pdf/2410.02675.pdf
79 3
|
2月前
|
计算机视觉 Perl
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
107 0
YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为CVPR-2024 PKINet 获取多尺度纹理特征,适应尺度变化大的目标
|
2月前
|
机器学习/深度学习 编解码 计算机视觉
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
186 0
YOLOv11改进策略【Backbone/主干网络】| 2023 U-Net V2 替换骨干网络,加强细节特征的提取和融合
|
5月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
140 3
|
6月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构

热门文章

最新文章

下一篇
oss创建bucket