Kubernetes 弹性伸缩全场景解析 (一):概念延伸与组件布局

本文涉及的产品
函数计算FC,每月15万CU 3个月
注册配置 MSE Nacos/ZooKeeper,118元/月
应用实时监控服务-应用监控,每月50GB免费额度
简介: 传统弹性伸缩的困境弹性伸缩是 Kubernetes 中被大家关注的一大亮点,在讨论相关的组件和实现方案之前。首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划与实际负载的矛盾。

传统弹性伸缩的困境

弹性伸缩是 Kubernetes 中被大家关注的一大亮点,在讨论相关的组件和实现方案之前。首先想先给大家扩充下弹性伸缩的边界与定义,传统意义上来讲,弹性伸缩主要解决的问题是容量规划与实际负载的矛盾。




如上图所示,蓝色的水位线表示集群的容量随着负载的提高不断的增长,红色的曲线表示集群的实际的负载真实的变化。而弹性伸缩要解决的就是当实际负载出现激增,而容量规划没有来得及反应的场景。


常规的弹性伸缩是基于阈值的,通过设置一个资源缓冲水位来保障资源的充盈,通常 15%-30% 左右的资源预留是比较常见的选择。换言之就是通过一个具备缓冲能力的资源池用资源的冗余换取集群的可用。


这种方式表面上看是没有什么问题的,确实在很多的解决方案或者开源组件中也是按照这种方式进行实现的,但是当我们深入的思考这种实现方案的时候会发现,这种方式存在如下三个经典问题。

1. 百分比碎片难题

在一个 Kubernetes 集群中,通常不只包含一种规格的机器,针对不同的场景、不同的需求,机器的配置、容量可能会有非常大的差异,那么集群伸缩时的百分比就具备非常大的迷惑性。假设我们的集群中存在 4C8G 的机器与 16C32G 的机器两种不同规格,对于 10% 的资源预留,这两种规格是所代表的意义是完全不同的。




特别是在缩容的场景下,通常为了保证缩容后的集群不处在震荡状态,我们会一个节点一个节点或者二分法来缩容节点,那么如何根据百分比来判断当前节点是处在缩容状态就尤为重要,此时如果大规格机器有较低的利用率被判断缩容,那么很有可能会造成节点缩容后,容器重新调度后的争抢饥饿。如果添加判断条件,优先缩容小配置的节点,则有可能造成缩容后资源的大量冗余,最终集群中可能会只剩下所有的巨石节点。

2. 容量的规划炸弹

还记得在没有使用容器前,是如何做容量规划的吗?一般会按照应用来进行机器的分配,例如,应用 A 需要 2 台 4C8G 的机器,应用 B 需要 4 台 8C16G 的机器,应用 A 的机器与应用 B 的机器是独立的,相互不干扰。到了容器的场景中,大部分的开发者无需关心底层的资源了,那么这个时候容量规划哪里去了呢?


在 Kubernetes 中是通过 Request 和 Limit 的方式进行设置,Request 表示资源的申请值,Limit 表示资源的限制值。既然 Request 和 Limit 才是容量规划的对等概念,那么这就代表着资源的实际计算规则要根据 Request 和 Limit 才更加准确。而对于每个节点预留资源阈值而言,很有可能会造成小节点的预留无法满足调度,大节点的预留又调度不完的场景。

3. 资源利用率困境

集群的资源利用率是否可以真的代表当前的集群状态呢?当一个 Pod 的资源利用率很低的时候,不代表就可以侵占它所申请的资源。在大部分的生产集群中,资源利用率都不会保持在一个非常高的水位,但从调度来讲,资源的调度水位应该保持在一个比较高的水位。这样才能既保证集群的稳定可用,又不过于浪费资源。


如果没有设置 Request 与 Limit,而集群的整体资源利用率很高这意味着什么?这表示所有的 Pod 都在被以真实负载为单元进行调度,相互之间存在非常严重的争抢,而且简单的加入节点也丝毫无法解决问题,因为对于一个已调度的 Pod 而言,除了手动调度与驱逐之外没有任何方式可以将这个 Pod 从高负载的节点中移走。那如果我们设置了 Request 与 Limit 而节点的资源利用率又非常高的时候说明了什么呢?很可惜这在大部分的场景下都是不可能的,因为不同的应用不同的负载在不同的时刻资源的利用率也会有所差异,大概率的情况是集群还没有触发设置的阈值就已经无法调度 Pod 了。

弹性伸缩概念的延伸

既然基于资源利用率的弹性伸缩有上述已知的三个问题,有什么办法可以来解决呢?随着应用类型的多样性发展,不同类型的应用的资源要求也存在越来越大的差异。弹性伸缩的概念和意义也在变化,传统理解上弹性伸缩是为了解决容量规划和在线负载的矛盾,而现在是资源成本与可用性之间的博弈。如果将常见的应用进行规约分类,可以分为如下四种不同类型:

1. 在线任务类型

比较常见的是网站、API 服务、微服务等常见的互联网业务型应用,这种应用的特点是对常规资源消耗较高,比如 CPU、内存、网络 IO、磁盘 IO 等,对于业务中断容忍性差。

2. 离线任务类型

例如大数据离线计算、边缘计算等,这种应用的特点是对可靠性的要求较低,也没有明确的时效性要求,更多的关注点是成本如何降低。

3. 定时任务类型

定时运行一些批量计算任务是这种应用的比较常见形态,成本节约与调度能力是重点关注的部分。

4. 特殊任务类型

例如闲时计算的场景、IOT 类业务、网格计算、超算等,这类场景对于资源利用率都有比较高的要求。


单纯的基于资源利用率的弹性伸缩大部分是用来解决第一种类型的应用而产生的,对于其他三种类型的应用并不是很合适,那么 Kubernetes 是如何解决这个问题的呢?

Kubernetes 的弹性伸缩布局

Kubernetes 将弹性伸缩的本质进行了抽象,如果抛开实现的方式,对于不同应用的弹性伸缩而言,该如何统一模型呢? Kubernetes 的设计思路是将弹性伸缩划分为保障应用负载处在容量规划之内与保障资源池大小满足整体容量规划两个层面。简单理解,当需要弹性伸缩时,优先变化的应该是负载的容量规划,当集群的资源池无法满足负载的容量规划时,再调整资源池的水位保证可用性。而两者相结合的方式是无法调度的 Pod 来实现的,这样开发者就可以在集群资源水位较低的时候使用 HPA、VPA 等处理容量规划的组件实现实时极致的弹性,资源不足的时候通过 Cluster-Autoscaler 进行集群资源水位的调整,重新调度,实现伸缩的补偿。两者相互解耦又相互结合,实现极致的弹性。


在 Kubernetes 的生态中,在多个维度、多个层次提供了不同的组件来满足不同的伸缩场景。如果我们从伸缩对象与伸缩方向两个方面来解读 Kubernetes 的弹性伸缩的话,可以得到如下的弹性伸缩矩阵。



  • cluster-autoscaler: kubernetes 社区中负责节点水平伸缩的组件,目前处在 GA 阶段 (General Availability, 即正式发布的版本)。
  • HPA: kubernetes 社区中负责 Pod 水平伸缩的组件,是所有伸缩组件中历史最悠久的,目前支持 autoscaling/v1、 autoscaling/v2beta1 与 autoscaling/v2beta2, 其中 autoscaling/v1 只支持 CPU 一种伸缩指标,在 autoscaling/v2beta1 中增加支持 custom metrics,在 autoscaling/v2beta2 中增加支持 external metrics。
  • cluster-proportional-autoscaler: 根据集群的节点数目,水平调整 Pod 数目的组件,目前处在 GA 阶段。
  • vetical-pod-autoscaler: 根据 Pod 的资源利用率、历史数据、异常事件,来动态调整负载的 Request 值的组件,主要关注在有状态服务、单体应用的资源伸缩场景,目前处在 beta 阶段。
  • addon-resizer: 根据集群中节点的数目,纵向调整负载的 Request 的组件,目前处在 beta 阶段。


在这五个组件中, cluster-autoscaler、 HPA、 cluster-proportional-autoscaler 是目前比较稳定的组件,建议有相关需求的开发者进行选用。


对于百分之八十以上的场景,我们建议客户通过 HPA 结合 cluster-autoscaler 的方式进行集群的弹性伸缩管理, HPA 负责负载的容量规划管理而 cluster-autoscaler 负责资源池的扩容与缩容。

最后

在本文中,和大家主要讨论的是在云原生时代下弹性伸缩概念的延伸,以及 Kubernetes 社区是如何通过解耦的方式通过多个转职的组件实现了两个维度的弹性伸缩,在本系列后面的文章中会为一一解析每个弹性伸缩组件的相关原理与用法。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
打赏
0
0
0
0
12711
分享
相关文章
PP-DocBee:百度飞桨多模态文档解析神器,中文场景SOTA准确率一键提取表格图表
PP-DocBee 是百度飞桨推出的专注于文档图像理解的多模态大模型,基于 ViT+MLP+LLM 架构,具备强大的中文文档解析能力,适用于文档问答、复杂文档解析等场景,支持多种部署方式。
142 1
ElasticSearch基础概念解析
以上就是ElasticSearch的基础概念。理解了这些概念,你就可以更好地使用ElasticSearch,像使用超级放大镜一样,在数据海洋中找到你需要的珍珠。
112 71
GitLab Runner 全面解析:Kubernetes 环境下的应用
GitLab Runner 是 GitLab CI/CD 的核心组件,负责执行由 `.gitlab-ci.yml` 定义的任务。它支持多种执行方式(如 Shell、Docker、Kubernetes),可在不同环境中运行作业。本文详细介绍了 GitLab Runner 的基本概念、功能特点及使用方法,重点探讨了流水线缓存(以 Python 项目为例)和构建镜像的应用,特别是在 Kubernetes 环境中的配置与优化。通过合理配置缓存和镜像构建,能够显著提升 CI/CD 流水线的效率和可靠性,助力开发团队实现持续集成与交付的目标。
React 步骤条组件 Stepper 深入解析与常见问题
步骤条组件是构建多步骤表单或流程时的有力工具,帮助用户了解进度并导航。本文介绍了在React中实现简单步骤条的方法,包括基本结构、状态管理、样式处理及常见问题解决策略,如状态管理库的使用、自定义Hook的提取和CSS Modules的应用,以确保组件的健壮性和可维护性。
115 17
阿里云服务器ECS通用型规格族解析:实例规格、性能基准与场景化应用指南
作为ECS产品矩阵中的核心序列,通用型规格族以均衡的计算、内存、网络和存储性能著称,覆盖从基础应用到高性能计算的广泛场景。通用型规格族属于独享型云服务器,实例采用固定CPU调度模式,实例的每个CPU绑定到一个物理CPU超线程,实例间无CPU资源争抢,实例计算性能稳定且有严格的SLA保证,在性能上会更加稳定,高负载情况下也不会出现资源争夺现象。本文将深度解析阿里云ECS通用型规格族的技术架构、实例规格特性、最新价格政策及典型应用场景,为云计算选型提供参考。
DeepSeek大模型在客服系统中的应用场景解析
在数字化浪潮下,客户服务领域正经历深刻变革,AI技术成为提升服务效能与体验的关键。DeepSeek大模型凭借自然语言处理、语音交互及多模态技术,显著优化客服流程,提升用户满意度。它通过智能问答、多轮对话引导、多模态语音客服和情绪监测等功能,革新服务模式,实现高效应答与精准分析,推动人机协作,为企业和客户创造更大价值。
184 5
|
1月前
|
【Flutter 开发必备】AzListView 组件全解析,打造丝滑索引列表!
在 Flutter 开发中,AzListView 是实现字母索引分类列表的理想选择。它支持 A-Z 快速跳转、悬浮分组标题、自定义 UI 和高效性能,适用于通讯录、城市选择等场景。本文将详细解析 AzListView 的核心参数和实战示例,助你轻松实现流畅的索引列表。
60 7
|
3月前
|
Spring底层架构核心概念解析
理解 Spring 框架的核心概念对于开发和维护 Spring 应用程序至关重要。IOC 和 AOP 是其两个关键特性,通过依赖注入和面向切面编程实现了高效的模块化和松耦合设计。Spring 容器管理着 Beans 的生命周期和配置,而核心模块为各种应用场景提供了丰富的功能支持。通过全面掌握这些核心概念,开发者可以更加高效地利用 Spring 框架开发企业级应用。
117 18
Tablestore深度解析:面向AI场景的结构化数据存储最佳实践
《Tablestore深度解析:面向AI场景的结构化数据存储最佳实践》由阿里云专家团队分享,涵盖Tablestore十年发展历程、AI时代多模态数据存储需求、VCU模式优化、向量检索发布及客户最佳实践等内容。Tablestore支持大规模在线数据存储,提供高性价比、高性能和高可用性,特别针对AI场景进行优化,满足结构化与非结构化数据的统一存储和高效检索需求。通过多元化索引和Serverless弹性VCU模式,助力企业实现低成本、灵活扩展的数据管理方案。
180 12
入门级容器技术解析:Docker和K8s的区别与关系
本文介绍了容器技术的发展历程及其重要组成部分Docker和Kubernetes。从传统物理机到虚拟机,再到容器化,每一步都旨在更高效地利用服务器资源并简化应用部署。容器技术通过隔离环境、减少依赖冲突和提高可移植性,解决了传统部署方式中的诸多问题。Docker作为容器化平台,专注于创建和管理容器;而Kubernetes则是一个强大的容器编排系统,用于自动化部署、扩展和管理容器化应用。两者相辅相成,共同推动了现代云原生应用的快速发展。
685 11

云原生

+关注

相关产品

  • 容器服务Kubernetes版
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等