《从机器学习到深度学习》笔记(3)强化学习

简介: 强化学习是对英文Reinforced Learning的中文翻译,它的另一个中文名称是“增强学习”。相对于有监督学习和无监督学习,强化学习是一个相对独特的分支;前两者偏向于对数据的静态分析,后者倾向于在动态环境中寻找合理的行为决策。

强化学习是对英文Reinforced Learning的中文翻译,它的另一个中文名称是“增强学习”。相对于有监督学习和无监督学习,强化学习是一个相对独特的分支;前两者偏向于对数据的静态分析,后者倾向于在动态环境中寻找合理的行为决策。

强化学习的行为主体是一个在某种环境中独立运行的Agent(可以理解为“机器人”), 其可以通过训练获得在该环境中的最佳行为模式。强化学习被看成是最接近人工智能的一个机器学习领域。

思考:为什么说强化学习是最接近人工智能的一个机器学习领域?

1. 五个要素

强化学习的场景由两个对象构成,它们是:

  • 智能代理(Agent):是可以采取一系列行动以达到某种目标的控制器,可以形象的将其理解为机器人大脑。比如自动驾驶的控制器、打败李世石的AlphaGo。
  • 环境(Environment):是Agent所能感知和控制的世界模型。对自动驾驶来说,Environment就是Agent所能感知到的路况和车本身的形式- 能力,对AlphaGo来说,Environment包括棋盘上的每种状态和行棋规则。

这两个对象其实定义了机器人和其所能感知到的世界。而就像人类能在自己的世界中行走、享受阳光,机器人也可以通过三种方式与其所在的环境交互:

  • 状态(State):是任意一个静态时刻Agent能感知到的Environment情况,相当于某一时刻人类五官能感知到的一切。
  • 行为(Action):是Agent能在Environment中执行的行为,对应于人类四肢所能做的所有事。
  • 反馈(Reward):是Agent执行某个/某些Action后获得的结果。Reward可以是正向的或者是负向的,相当于人类感受到的酸甜苦辣。
    以上五种强化学习要素的关系如图1-12所示,它们在一起构建起了强化学习的应用场景。

1_12

图1-12  强化学习场景

另外,在强化学习中Reward有时是延时获得的。即Agent在做出某个Action后不会马上获得Reward,而需要在一系列Action之后才能获得。每个任务最终获的Reward被称为value。比如在围棋环境中,只有结果是胜是败才对之前的所有Action给出最终的value。

延迟获得value的本质分析的是一系列相关行为共同发生的作用,也是强化学习与有监督学习最主要的一个不同点。试想如果每一个Action都可以获得一个相应的Reward,那么Reward就退化成了有监督学习中的label(标签)。

2. 两种场景与算法

具备上述五个要素的强化学习可以用来解决两类问题:

  1. 状态预测问题:用马尔可夫过程估计在任一时刻各种状态发生的可能性,其中蒙特卡洛模拟(Monte Carlo Method)是一类重要方法。
  2. 控制问题:如何控制Agent以获得最大Reward。其算法可以分成两类:
  • 基于策略的学习(Policy-based):基于概率分布学习行为的可能性,根据可能性选择执行的动作,可学习连续值或离散值类型行为。典型算法是Policy Gradients。
  • 基于价值学习(Value-based):直接基于Reward学习行为结果,只能学习离散类型行为,包括算法Q-learning、Sarsa。
    另外,还有个别算法兼具Policy-Based和Value-Based特点,比如Actor-Critic。

不得不承认的是,虽然强化学习是更智能的机器学习分支,但目前产品级应用还比较少,多集中在游戏娱乐和简单工业控制。本书将在第6章介绍隐马尔可夫模型,第7章介绍以马尔可夫收敛定理为基础的蒙特卡洛推理,在第10章详细学习各类强化学习控制问题。

从机器学习,到深度学习

从深度学习,到强化学习

从强化学习,到深度强化学习

从优化模型,到模型的迁移学习

一本书搞定!
d01b2e3c1893d577

相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
77 3
|
20天前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
|
9天前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
93 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
从深度学习到强化学习的旅程
【10月更文挑战第23天】从深度学习到强化学习的旅程
|
1月前
|
机器学习/深度学习 人工智能 算法
深度学习和强化学习有什么区别呢
【10月更文挑战第23天】深度学习和强化学习有什么区别呢
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
93 0
|
1月前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
43 0
|
2月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
105 2
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
78 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练