Neural Networks: Representation
一、 内容概要
- Neural Network
- Model Representation 1
- Model Representation 2
- Applications
- Examples and Intuitions 1
- Examples and Intuitions 2
- Multiclass Classification
二、重点&难点
1. Neural Network
1)Model Representation 1
首先需要明确一些符号的意思,以方便后面的阅读。
αi(j):表示第j层的第i个激活单元(activation)
θ(j) :表示第j层映射到第j+1层的控制函数的权重矩阵。
如图是一个三层结构的神经网络(输入层,隐藏层、输出层),每一层的激活单元的计算表达式图中也已经写出来了。
还需要注意的是:
若神经网络在第j层有sj个单元,在j+1层有sj+1个单元,则θ(j)矩阵的维度是(sj+1,sj),之所以要加1是因为输入层和隐藏层都需要加一个bias。
如下图,θ(1)的维度是(4, 3)
2) Model Representation 2
在上面内容的基础上我们继续抽象化,向量化,使得神经网络计算表达式看起来更加简洁(但是更加抽象了。。。)
突然发现Coursera上的数学公式是可以复制的。。。。简直不要太舒服,终于不用自己敲键盘了。。。问我方法?右键即可。
- 神经网络结构示例
a(2)1=g(Θ(1)10x0+Θ(1)11x1+Θ(1)12x2+Θ(1)13x3)a(2)2=g(Θ(1)20x0+Θ(1)21x1+Θ(1)22x2+Θ(1)23x3)a(2)3=g(Θ(1)30x0+Θ(1)31x1+Θ(1)32x2+Θ(1)33x3)hΘ(x)=a(3)1=g(Θ(2)10a(2)0+Θ(2)11a(2)1+Θ(2)12a(2)2+Θ(2)13a(2)3)
- 向量化
z(j)k 来向量化g()函数内的值,例如 z(2)k=Θ(1)k,0x0+Θ(1)k,1x1+⋯+Θ(1)k,nxn
a(2)1=g(z(2)1)a(2)2=g(z(2)2)a(2)3=g(z(2)3)
- z与α的关系
z(j)=Θ(j−1)a(j−1)
a(j)=g(z(j))
hΘ(x)=a(j+1)=g(z(j+1))
2. Applications
1)神经网络实现简单的与或非
这里只简单记录一下或(or)&非(not)
MARSGGBO原创
2017-8-3