Andrew Ng机器学习课程笔记--week10(优化梯度下降)

简介: 本周主要介绍了梯度下降算法运用到大数据时的优化方法。一、内容概要Gradient Descent with Large DatasetsStochastic Gradient DescentMini-Batch Gradient DescentStochastic Gradient ...

本周主要介绍了梯度下降算法运用到大数据时的优化方法。

一、内容概要

  • Gradient Descent with Large Datasets
    • Stochastic Gradient Descent
    • Mini-Batch Gradient Descent
    • Stochastic Gradient Descent Convergence
  • Advanced Topics
    • Online Learning
    • Map Reduce and Data Parallelism(映射化简和数据并行)

二、重点&难点

Gradient Descent with Large Datasets

1) Batch gradient descent

首先回顾一下普通梯度下降算法:,也叫批量梯度下降算法

\[h_θ(x)=\sum_{j=1}^{n}θ_jx_j \tag {1.1}\]
\[J(θ) = \frac{1}{2m}\sum_{i=1}^{m}(h_θ(x^{(i)}) - y^{(i)})^2 \tag {1.2}\]

Repeat until convergence{
\[\begin{align} θ_j & = θ_j - α\frac{∂J(θ)}{∂θ_j} \tag {1.31} \\ & = θ_j - α\frac{1}{m}\sum_{i=1}^{m}( h_θ(x^{(i)})-y^{(i)})x_j^{(i)} \quad j=1,2...,n \tag {1.32} \end{align}\]
}

1)Stochastic Gradient Descent

将计算大数据时,即m很大的情况下,上面 (1.32) 式右边有一个 Σ(累加) 符号,每一次迭代显然会耗费大量的时间。所以提出了随机梯度下降算法进行改进。

\[ cost(θ,(x^{(i)}, y^{(i)})) = \frac{1}{2}( h_θ(x^{(i)}) - y^{(i)} )^2 \tag {2.1}\]
\[J(θ) = \frac{1}{m}\sum_{i=1}^{m}cost(θ,(x^{(i)}, y^{(i)})) \tag{2.2}\]
步骤如下:

  • 1.打乱数据,重新随机排列
  • 2.Repeat until convergence{
    \[\begin{align} θ_j &=θ_j-α\frac{∂cost(θ,(x^{(i)}, y^{(i)}))}{∂θ_j} \tag{2.31}\\ &= θ_j - α( h_θ(x^{(i)})-y^{(i)})x_j^{(i)} \quad j=1,2...,n \tag{2.32} \end{align}\]
    }


如图示,因为每次只更新一个权重,所以相比于批量梯度下降的收敛路线,随机梯度下降要更加崎岖迂回一些。而且每次收敛的结果也不一定相等。

因此算法虽然会逐渐走向全局最小值的位置,但是可能无法站到那个最小值的那一点,而是在最小值点附近徘徊。

2)Mini-Batch Gradient Descent

上面的随机梯度下降的收敛过程显得比较任性,所以综合前面提到的两种梯度算法的优点提出了小批量梯度下降算法,即每次考虑一小批量的数据来更新权重,算法如下:

假设总共有m个数据,每次迭代使用b个数据进行更新

  • \(i\)初始化为1
  • Repeat until convergence {
       while(i≤m)
        {
            \(\qquad θ_j = θ_j - α\frac{1}{m}\sum_{k=i}^{i+(b-1)}( h_θ(x^{(k)})-y^{(k)})x_j^{(k)} \quad j=1,2...,n\)
        }
        i += b;
    }

通常我们会令 b 在 2-100 之间。这样做的好处在于,我们可以用向量化的方式来循环b 个训练实例,如果我们用的线性代数函数库比较好,能够支持平行处理,那么算法的总体表现将不受影响(与随机梯度下降相同)。

3)Stochastic Gradient Descent Convergence

本节介绍了令代价函数 J 为迭代次数的函数,绘制图表,根据图表来判断梯度下降是否收敛,并根据收敛趋势进行调试。

常见有如下四种情况:

  • 左上
    • 蓝色:表示最开始的迭代情况,可以看出是收敛的,但是数据有毛刺(噪声),而且不是很光滑。
    • 红色降低学习速率α后噪音减少,是收敛效果更好
  • 右上
    • 蓝色:数据集为1000的时候所绘制的,可以看到本身的收敛还是不错的。
    • 红色:将数据增加到5000后收敛更加平缓。(增加数据
  • 左下
    • 蓝色:最开始的收敛非常糟糕,几乎不收敛
    • 红色:增加数据后,开始收敛,但是收敛效果不好
    • 粉色:降低α后,也几乎不收敛,所以此时可以推测是模型本身有问题,需要重新建立。
  • 右下
    • 模型呈现上升趋势,可能是学习速率α过大导致,可以尝试减小α。我们也可以让学习速率随着迭代次数增加而减小,如\(α=\frac{常数C_1}{迭代次数+常数C_2}\)。但是也这样有个缺陷就是你还需要不断的尝试两个参数,即两个常数,所以虽然效果可能会不错,但是调试起来会比较麻烦。

自适应α

Advanced Topics

1)Online Learning

在线学习算法适用于有一系列连续的数据需要学习的情况。有点类似于随机梯度下降算法,每次使用一个数据来更新权重。比如说常用的网易云音乐,可能根据用户实时的点击、收藏等行为在线学习,从而更加符合用户时常变换的口味。
更准确的说在线学习算法指的是对数据流而非离线的静态数据集的学习。许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺利地进行算法学习。

算法如下:

Repeat forever(直到网站倒闭233){
   获取当前用户的数据(x,y)
      \(θ_j := θ_j - α(h_θ(x)-y)x_j \quad\)(for j in range(n))
}

一旦对一个数据的学习完成了,我们便可以丢弃该数据,不需要再存储它了。这种方式的好处在于,我们的算法可以很好的适应用户的倾向性,算法可以针对用户的当前行为不断地更新模型以适应该用户。

大公司会获取非常多的数据,真的没有必要来保存一个固定的数据集,取而代之的是你可以使用一个在线学习算法来连续的学习,从这些用户不断产生的数据中来学习。这就是在线学习机制,然后就像我们所看到的,我们所使用的这个算法与随机梯度下降算法非常类似,唯一的区别的是,我们不会使用一个固定的数据集,我们会做的是获取一个用户样本,从那个样本中学习,然后丢弃那个样本并继续下去,而且如果你对某一种应用有一个连续的数据流,这样的算法可能会非常值得考虑。当然,在线学习的一个优点就是,如果你有一个变化的用户群,又或者你在尝试预测的事情,在缓慢变化,就像你的用户的品味在缓慢变化,这个在线学习算法,可以慢慢地调试你所学习到的假设,将其调节更新到最新的用户行为。

2)Map Reduce and Data Parallelism(映射化简和数据并行)

这节课的内容应该可以理解成分布式计算,即把一个计算任务分配给若干个计算机(或者若干个CPU)进行计算,最后将结果汇总在一起计算,这样就可以提高计算速度。以上就是映射简化(map reduce)







MARSGGBO原创





2017-8-15



目录
相关文章
|
7月前
|
机器学习/深度学习 自然语言处理 搜索推荐
【机器学习】揭秘!机器学习如何助力我们高效优化文本?
【机器学习】揭秘!机器学习如何助力我们高效优化文本?
76 3
|
7月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
在机器学习的实践中,构建一个高效的模型并非一蹴而就。本文将深入探讨如何通过精确的数据预处理、合理的特征选择、适当的模型构建以及细致的参数调优来提升模型的性能。我们将讨论数据清洗的重要性,探索特征工程的策略,分析不同算法的适用场景,并分享模型调参的实用技巧。目标是为读者提供一套系统的方法论,以指导他们在构建机器学习模型时能够更加高效和目标明确。
672 3
|
7月前
|
机器学习/深度学习 数据采集 自然语言处理
构建高效机器学习模型:从数据预处理到模型优化
在机器学习的实践中,一个精确且高效的模型是成功解决问题的关键。本文将深入探讨如何从原始数据的收集与处理开始,通过选择合适的算法,再到模型的训练与优化,最终构建出一个高性能的机器学习模型。我们将讨论数据预处理的重要性、特征工程的策略、常用机器学习算法的选择标准以及超参数调整的最佳实践。通过案例分析和技术讲解,本文旨在为读者提供一个清晰的构建高效机器学习模型的蓝图。
|
4月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
43 1
|
7月前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
52 1
|
7月前
|
机器学习/深度学习 前端开发 算法
利用机器学习优化Web前端性能的探索与实践
本文将介绍如何利用机器学习技术来优化Web前端性能,探讨机器学习在前端开发中的应用,以及通过实际案例展示机器学习算法对前端性能优化的效果。通过结合前端技术和机器学习,提升Web应用的用户体验和性能表现。
|
7月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第5天】 在机器学习领域,构建一个高效的模型并非易事。它涉及多个阶段,包括数据预处理、特征工程、模型选择、训练以及最终的评估和优化。本文深入探讨了如何通过精确的数据预处理技巧和细致的特征工程来提升模型性能,同时介绍了几种常见的模型优化策略。我们的目标是为读者提供一套实用的指导方案,帮助他们在面对复杂数据集时能够有效地构建和调整机器学习模型。
|
7月前
|
机器学习/深度学习 传感器 监控
利用机器学习优化数据中心能效
在数据中心管理和运营中,能效优化是减少能源消耗、降低运营成本的关键。本文探讨了应用机器学习技术对数据中心的能效进行实时监控和优化的方法。通过分析历史数据和实时参数,构建预测模型来指导冷却系统的调整,实现智能化能源管理。结果表明,该方法可以显著提升数据中心的能源使用效率,为绿色计算提供技术支持。
|
7月前
|
机器学习/深度学习 资源调度 算法
利用机器学习优化数据中心能效的策略
【2月更文挑战第31天】 在云计算和大数据的时代,数据中心作为核心基础设施,其能效管理已成为技术创新的前沿话题。本文旨在探讨通过机器学习技术优化数据中心能效的可能性与实践策略。通过对现有数据中心运行模式的分析,结合机器学习在能源消耗预测、资源调度和故障检测等方面的应用案例,我们展示了如何实现智能化的能源管理,以及这些技术如何帮助降低运营成本并减少环境影响。文中不仅详细阐述了机器学习模型的构建过程,还讨论了实施中的挑战及未来发展方向。
|
7月前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据处理到算法优化
【2月更文挑战第30天】 在数据驱动的时代,构建一个高效的机器学习模型是实现智能决策和预测的关键。本文将深入探讨如何通过有效的数据处理策略、合理的特征工程、选择适宜的学习算法以及进行细致的参数调优来提升模型性能。我们将剖析标准化与归一化的差异,探索主成分分析(PCA)的降维魔力,讨论支持向量机(SVM)和随机森林等算法的适用场景,并最终通过网格搜索(GridSearchCV)来实现参数的最优化。本文旨在为读者提供一条清晰的路径,以应对机器学习项目中的挑战,从而在实际应用中取得更精准的预测结果和更强的泛化能力。
下一篇
无影云桌面