算法的时间复杂度(计算实例)

简介: 算法的时间复杂度定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。

算法的时间复杂度定义:如果一个问题的规模是n,解这一问题的某一算法所需要的时间为T(n),它是n的某一函数 T(n)称为这一算法的“时间复杂性”。 当输入量n逐渐加大时,时间复杂性的极限情形称为算法的“渐近时间复杂性”。 我们常用大O表示法表示时间复杂性,注意它是某一个算法的时间复杂性。大O表示只是说有上界,由定义如果f(n)=O(n),那显然成立f(n)=O(n^2),它给你一个上界,但并不是上确界,但人们在表示的时候一般都习惯表示前者。 此外,一个问题本身也有它的复杂性,如果某个算法的复杂性到达了这个问题复杂性的下界,那就称这样的算法是最佳算法。 “大O记法”:在这种描述中使用的基本参数是 n,即问题实例的规模,把复杂性或运行时间表达为n的函数。这里的“O”表示量级 (order),比如说“二分检索是 O(logn)的”,也就是说它需要“通过logn量级的步骤去检索一个规模为n的数组”记法 O ( f(n) )表示当 n增大时,运行时间至多将以正比于 f(n)的速度增长。 这种渐进估计对算法的理论分析和大致比较是非常有价值的,但在实践中细节也可能造成差异。例如,一个低附加代价的O(n2)算法在n较小的情况下可能比一个高附加代价的 O(nlogn)算法运行得更快。当然,随着n足够大以后,具有较慢上升函数的算法必然工作得更快。 O(1) Temp=i;i=j;j=temp; 以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。如果算法的执行时 间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。 O(n^2) 2.1. 交换i和j的内容 sum=0; (一次) for(i=1;i<=n;i++) (n次 ) for(j=1;j<=n;j++) (n^2次 ) sum++; (n^2次 )解:T(n)=2n^2+n+1 =O(n^2) 2.2. for (i=1;i

目录
相关文章
|
5月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
9月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
机器学习/深度学习 缓存 算法
Python算法设计中的时间复杂度与空间复杂度,你真的理解对了吗?
【10月更文挑战第4天】在Python编程中,算法的设计与优化至关重要,尤其在数据处理、科学计算及机器学习领域。本文探讨了评估算法性能的核心指标——时间复杂度和空间复杂度。通过详细解释两者的概念,并提供快速排序和字符串反转的示例代码,帮助读者深入理解这些概念。同时,文章还讨论了如何在实际应用中平衡时间和空间复杂度,以实现最优性能。
272 6
|
9月前
|
算法 Python
Apriori算法的Python实例演示
经过运行,你会看到一些集合出现,每个集合的支持度也会给出。这些集合就是你想要的,经常一起被购买的商品组合。不要忘记,`min_support`参数将决定频繁项集的数量和大小,你可以根据自己的需要进行更改。
361 18
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
294 0
|
11月前
|
算法 数据安全/隐私保护
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
264 14
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
659 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
361 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
算法 定位技术
数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题
本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。
368 0