中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

简介: 中草药识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型

一、介绍

中草药识别系统。本系统基于TensorFlow搭建卷积神经网络算法(ResNet50算法)通过对10中常见的中草药图片数据集('丹参', '五味子', '山茱萸', '柴胡', '桔梗', '牡丹皮', '连翘', '金银花', '黄姜', '黄芩')进行训练,得到一个识别精度较高的H5格式模型文件,然后基于Django开发可视化的Web网页操作界面,实现用户上传一张图片识别其名称。

二、效果图片展示

img_05_20_15_52_04

img_05_20_15_52_17

img_05_20_15_52_34

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/fqkwp6aa2ely3tpx

四、TensorFlow介绍

TensorFlow是一个由Google开发的开源机器学习库,广泛应用于各种人工智能领域,特别是在图像识别技术方面表现出色。它支持多种语言接口,其中Python是最常用的一种。TensorFlow提供了灵活且强大的工具集,可以用来开发复杂的图像识别模型,如卷积神经网络(CNN)。
在图像识别方面,TensorFlow的几个主要特点包括:

  1. 高性能计算支持:TensorFlow可以利用GPU和TPU进行高效的数值计算,极大地加速了模型的训练和推断过程。
  2. 灵活的模型构建:TensorFlow提供了多种构建模型的方式,包括顺序模型、函数式API以及低级API,使得开发者能够根据需要灵活选择。
  3. 丰富的预训练模型和资源:通过TensorFlow Hub,用户可以访问大量的预训练模型,这些模型可以被用来进行迁移学习,显著降低开发新模型的时间和资源消耗。
  4. 强大的社区和生态系统:作为一个由Google支持的项目,TensorFlow拥有广泛的开发者社区和生态系统,提供丰富的教程、工具和库来支持开发者。

下面是使用TensorFlow构建一个简单的CNN模型来分类CIFAR-10数据库中的图像。CIFAR-10是一个常用的图像分类数据集,包含60000张32x32的彩色图像,分为10个类别。

import tensorflow as tf
from tensorflow.keras import layers, models
import numpy as not

# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()

# 数据预处理,归一化
train_images, test_images = train_images / 255.0, test_images / 255.0

# 构建模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10))

# 编译模型
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

# 训练模型
history = model.fit(train_images, train_labels, epochs=10, 
                    validation_data=(test. images, test_labels))

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)
print(f"Test accuracy: {test_acc}")
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 安全
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
【PSO-LSTM】基于PSO优化LSTM网络的电力负荷预测(Python代码实现)
|
27天前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
1月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
15天前
|
机器学习/深度学习 算法 vr&ar
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
【深度学习】基于最小误差法的胸片分割系统(Matlab代码实现)
|
23天前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
|
2月前
|
机器学习/深度学习 算法 调度
基于遗传算法GA算法优化BP神经网络(Python代码实现)
基于遗传算法GA算法优化BP神经网络(Python代码实现)
103 0
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
|
3月前
|
机器学习/深度学习 存储 监控
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
本项目基于深度学习的YOLO框架,成功实现了城市道路损伤的自动检测与评估。通过YOLOv8模型,我们能够高效地识别和分类路面裂缝、井盖移位、坑洼路面等常见的道路损伤类型。系统的核心优势在于其高效性和实时性,能够实时监控城市道路,自动标注损伤类型,并生成损伤评估报告。
167 0
基于深度学习YOLO框架的城市道路损伤检测与评估项目系统【附完整源码+数据集】
|
3月前
|
机器学习/深度学习 自动驾驶 算法
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
在智慧交通和智能驾驶日益普及的今天,准确识别复杂交通场景中的关键元素已成为自动驾驶系统的核心能力之一。传统的图像处理技术难以适应高动态、复杂天气、多目标密集的交通环境,而基于深度学习的目标检测算法,尤其是YOLO(You Only Look Once)系列,因其检测速度快、精度高、可部署性强等特点,在交通场景识别中占据了重要地位。
339 0
基于深度学习的YOLO框架的7种交通场景识别项目系统【附完整源码+数据集】
|
15天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。

推荐镜像

更多