数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍

简介: 文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。

前言

  • 前面的数据结构到了现在可以到一段落了。
  • 从第十章开始就要学习 排序算法了。
  • 排序算法主要学习(按学习顺序来排列、也是难易程度):冒泡排序、简单选择排序、直接插入排序、希尔排序、快速排序、归并排序、基数排序、堆排序等等。
  • 这一节主要是介绍排序的分类、还有衡量算法的优劣的方法时间复杂度,还有常用的时间复杂度等等

一、排序算法介绍

排序也称 排序算法 (Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程

1.1 排序分类

  1. 内部排序:
    指将需要处理的所有数据都加载到内部存储器中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
  3. 常见的排序算法分类(见下图):
    在这里插入图片描述

二、算法的时间复杂度

2.1 度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法
    这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  2. 事前估算的方法
    通过分析某个算法的 时间复杂度 来判断哪个算法更优.

2.2 时间频度

2.2.1 基本介绍

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)

2.2.2 举例说明-基本案例

比如计算1-100所有数字之和, 我们设计两种算法:
第一种就是 100,第二种就是 1。
在这里插入图片描述
在这里插入图片描述

2.2.3 举例说明-忽略常数项

图1 列表 列表对应曲线图走向

结论:

  1. 2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略

  2. 3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略

2.2.4 举例说明-忽略低次项

图1 列表 列表对应曲线图走向

结论:

  1. 2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
  2. n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20**

2.2.5 举例说明-忽略系数

图1 列表 列表对应曲线图走向

结论:

  1. 随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
  2. 而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键

2.3 时间复杂度

  1. 一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。

  2. T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。

  3. 计算时间复杂度的方法:

  • 用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
  • 修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
  • 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)

2.4 常见的时间复杂度

  1. 常数阶O(1)
  2. 对数阶O(log2n)
  3. 线性阶O(n)
  4. 线性对数阶O(nlog2n)
  5. 平方阶O(n^2)
  6. 立方阶O(n^3)
  7. k次方阶O(n^k)
  8. 指数阶O(2^n)
  • 常见的时间复杂度对应的图:
    在这里插入图片描述
    说明:
  1. 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n) ,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法

2.4.1 常数阶 O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
在这里插入图片描述

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。

2.4.2 对数阶 O(log2n)

在这里插入图片描述
说明:
在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .

复习对数函数:
在这里插入图片描述

2.4.3 线性阶 O(n)

在这里插入图片描述
说明:
这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度

2.4.4 线性对数阶 O(nlog2n)

在这里插入图片描述
说明:
线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)

2.4.5 平方阶 O(n^2)

在这里插入图片描述
说明:
平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n_n),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m_n)

2.4.6 立方阶 O(n^ 3) 、K次方阶O(n^k)

说明:参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似

2.5 最坏时间复杂度

  1. 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
  2. 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
  3. 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
    在这里插入图片描述

三、算法的空间复杂度【简单了解即可】

  1. 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。

  2. 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况

  3. 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.

相关文章
|
17天前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
17天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
69 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
1月前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
19 0
数据结构与算法学习十四:常用排序算法总结和对比
|
1月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
29 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
1月前
|
机器学习/深度学习 存储 算法
【数据结构与算法基础】——算法复杂度
【数据结构与算法基础】——算法复杂度
|
5月前
|
算法 C++ Python
数据结构与算法===贪心算法
数据结构与算法===贪心算法
|
1月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
18 0
|
5月前
|
算法 Java
Java数据结构与算法:最短路径算法
Java数据结构与算法:最短路径算法