前言
- 前面的数据结构到了现在可以到一段落了。
- 从第十章开始就要
学习 排序算法
了。 - 排序算法主要学习(按学习顺序来排列、也是难易程度):
冒泡排序、简单选择排序、直接插入排序、希尔排序、快速排序、归并排序、基数排序、堆排序
等等。 - 这一节主要是
介绍排序的分类、还有衡量算法的优劣的方法时间复杂度,还有常用的时间复杂度等等
。
一、排序算法介绍
排序也称 排序算法
(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。
1.1 排序分类
- 内部排序:
指将需要处理的所有数据都加载到内部存储器中
进行排序。 - 外部排序法:
数据量过大
,无法全部加载到内存中,需要借助外部存储进行排序。 - 常见的排序算法分类(见下图):
二、算法的时间复杂度
2.1 度量一个程序(算法)执行时间的两种方法
事后统计的方法
这种方法可行, 但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。事前估算的方法
通过分析某个算法的时间复杂度
来判断哪个算法更优.
2.2 时间频度
2.2.1 基本介绍
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)
。
2.2.2 举例说明-基本案例
比如计算1-100所有数字之和, 我们设计两种算法:
第一种就是 100,第二种就是 1。
2.2.3 举例说明-忽略常数项
图1 列表 | 列表对应曲线图走向 |
结论:
2n+20 和 2n 随着n 变大,执行曲线无限接近, 20可以忽略
3n+10 和 3n 随着n 变大,执行曲线无限接近, 10可以忽略
2.2.4 举例说明-忽略低次项
图1 列表 | 列表对应曲线图走向 |
结论:
- 2n^2+3n+10 和 2n^2 随着n 变大, 执行曲线无限接近, 可以忽略 3n+10
- n^2+5n+20 和 n^2 随着n 变大,执行曲线无限接近, 可以忽略 5n+20**
2.2.5 举例说明-忽略系数
图1 列表 | 列表对应曲线图走向 |
结论:
- 随着n值变大,5n^2+7n 和 3n^2 + 2n ,执行曲线重合, 说明 这种情况下, 5和3可以忽略。
- 而n^3+5n 和 6n^3+4n ,执行曲线分离,说明多少次方式关键
2.3 时间复杂度
一般情况下,
算法中的基本操作语句的重复执行次数是问题规模n的某个函数
,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) / f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=O( f(n) )
,称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。T(n) 不同,但时间复杂度可能相同。 如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)。
计算时间复杂度的方法:
- 用常数1代替运行时间中的所有加法常数 T(n)=n²+7n+6 => T(n)=n²+7n+1
- 修改后的运行次数函数中,只保留最高阶项 T(n)=n²+7n+1 => T(n) = n²
- 去除最高阶项的系数 T(n) = n² => T(n) = n² => O(n²)
2.4 常见的时间复杂度
- 常数阶O(1)
- 对数阶O(log2n)
- 线性阶O(n)
- 线性对数阶O(nlog2n)
- 平方阶O(n^2)
- 立方阶O(n^3)
- k次方阶O(n^k)
- 指数阶O(2^n)
- 常见的时间复杂度对应的图:
说明:
- 常见的算法时间复杂度由小到大依次为:
Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n)
,随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低 - 从图中可见,我们应该尽可能避免使用指数阶的算法
2.4.1 常数阶 O(1)
无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1)
上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。
2.4.2 对数阶 O(log2n)
说明:
在while循环里面,每次都将 i 乘以 2,乘完之后,i 距离 n 就越来越近了。假设循环x次之后,i 就大于 2 了,此时这个循环就退出了,也就是说 2 的 x 次方等于 n,那么 x = log2n也就是说当循环 log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为:O(log2n) 。 O(log2n) 的这个2 时间上是根据代码变化的,i = i * 3 ,则是 O(log3n) .
复习对数函数:
2.4.3 线性阶 O(n)
说明:
这段代码,for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度
2.4.4 线性对数阶 O(nlog2n)
说明:
线性对数阶O(nlogN) 其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是 n * O(logN),也就是了O(nlogN)
2.4.5 平方阶 O(n^2)
说明:
平方阶O(n²) 就更容易理解了,如果把 O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是 O(n_n),即 O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了 O(m_n)
2.4.6 立方阶 O(n^ 3) 、K次方阶O(n^k)
说明:参考上面的O(n²) 去理解就好了,O(n³)相当于三层n循环,其它的类似
2.5 最坏时间复杂度
- 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
- 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂度。 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
- 平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图:)。
三、算法的空间复杂度【简单了解即可】
类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.