【任务分配】基于拍卖算法多无人机多任务分配附Matlab代码

简介: 【任务分配】基于拍卖算法多无人机多任务分配附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

在无人机技术的快速发展和广泛应用的背景下,多无人机多任务分配问题成为了一个备受关注的研究领域。随着无人机数量的增加和任务复杂度的提高,如何高效地将任务分配给多个无人机,以实现最佳的任务完成效率,成为了一个非常重要的问题。

传统的任务分配方法通常采用集中式或分布式的策略,但随着无人机数量的增加,这些方法往往会面临计算复杂度高、通信开销大以及任务分配效果不理想等问题。为了解决这些问题,研究者们开始关注基于拍卖算法的多无人机多任务分配方法。

拍卖算法是一种经典的优化算法,它通过竞价的方式将任务分配给无人机。在拍卖算法中,每个无人机将提交一个竞价,表示其愿意完成该任务的价格。然后,任务会被分配给出价最高的无人机。通过这种方式,拍卖算法可以在保证任务分配效果的同时,减少计算复杂度和通信开销。

在基于拍卖算法的多无人机多任务分配中,首先需要确定任务的属性和无人机的能力,然后将任务和无人机进行匹配。这个匹配过程可以通过建立一个任务-无人机的二部图来实现。然后,每个无人机根据任务的需求和自身的能力,提交一个竞价。最后,任务会被分配给出价最高的无人机。

拍卖算法的优势在于它能够根据任务的属性和无人机的能力,动态地调整任务的分配,以实现最佳的任务完成效率。此外,拍卖算法还可以通过引入奖励机制,激励无人机提交更高的竞价,从而提高任务分配的效果。

然而,基于拍卖算法的多无人机多任务分配也存在一些挑战。首先,拍卖算法需要准确地估计任务的价值和无人机的能力,这对于实际应用中的大规模任务分配来说是一个难题。其次,拍卖算法对通信的要求比较高,需要无人机之间进行频繁的通信,这在一些特定环境下可能会受到限制。

总的来说,基于拍卖算法的多无人机多任务分配是一个具有挑战性的问题,但它具有很大的应用潜力。随着无人机技术的不断发展,相信在未来会有更多的研究和创新,进一步提高多无人机多任务分配的效率和可靠性。

📣 部分代码

clear all;% 小车们的起始坐标矩阵tracks = [1,1 ; 1,9;7,9;9,1];  % 四辆小车%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%old_tracks = tracks;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tracks = [1,1 ; 1,9; 9,1];  % 三辆小车% tracks = [1,1 ; 9,1];  % 两辆小车% tracks = [1,1 ;];  % 一辆小车% 所有任务矩阵dets = [2,1; 3,2; 6,2; 8,5; 9,5;        2,3; 5,3; 6,3; 7,3; 9,7;        3,4; 5,6; 6,5; 8,9; 5,8;        3,8; 2,6; 2,9; 4,9; 4,10];% dets = ceil(rand(20,2)*10)plot(tracks(:, 1), tracks(:, 2), '*', dets(:, 1), dets(:, 2), 'o')% plot(tracks(:, 1), tracks(:, 2), dets(:, 1), dets(:, 2))

⛳️ 运行结果

🔗 参考文献

  1. X. Liu and J. P. How, "Auction-based multi-robot task allocation with complex tasks," in IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1038-1052, Oct. 2008.
  2. J. Ren, Z. Zhang and Y. Zhang, "Multi-UAV Task Allocation Based on Improved Auction Algorithm," 2018 37th Chinese Control Conference (CCC), Wuhan, China, 2018, pp. 10774-10779.
  3. Z. Zhang, J. Ren and Y. Zhang, "Multi-UAV Task Allocation Based on Improved Auction Algorithm," 2018 37th Chinese Control Conference (CCC), Wuhan, China, 2018, pp. 10774-10779.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合



相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章