基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: 本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。

1.算法运行效果图预览
(完整程序运行后无水印)

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

Ddddddddddddd

4.算法理论概述
在认知异构网络(CHN)中,准确且高效地检测主用户信号的存在与否至关重要,这直接关系到次用户能否合理利用频谱资源,避免对主用户造成干扰。能量检测算法作为一种常用的频谱感知方法,其性能在很大程度上依赖于所选取的检测阈值。基于 GA 遗传优化的最优阈值计算方法为解决这一问题提供了有效的途径,它通过模拟生物进化过程,在复杂的参数空间中搜索出能使能量检测算法性能达到最优的阈值。

   认知异构网络由不同类型的接入技术、网络节点以及频谱资源构成。通常包含授权的主用户(Primary User,PU)和未授权的次用户(Secondary User,SU)。主用户拥有频谱的优先使用权,次用户需要在不干扰主用户通信的前提下伺机接入频谱。网络中的基站、接入点以及用户终端等设备在不同频段、不同传输特性下交互协作,形成一个多层次、多模式的通信架构。

1.算法运行效果图预览
(完整程序运行后无水印)

Ttttttttttttttttt123

2.算法运行软件版本
matlab2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```MAXGEN = 100;
NIND = 500;
Nums = 1;
Chrom = crtbp(NIND,Nums*10);

%sh
Areas = [];
for i = 1:1
Areas = [Areas,[-120;120]];%卷积核
end

FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];

gen = 0;
Js = 0.5*rand(NIND,1);
Objv = (Js+eps);
gen = 0;

while gen < MAXGEN
gen
Pe0 = 0.999;
pe1 = 0.001;

  FitnV=ranking(Objv);    
  Selch=select('sus',Chrom,FitnV);    
  Selch=recombin('xovsp', Selch,Pe0);   
  Selch=mut( Selch,pe1);   
  phen1=bs2rv(Selch,FieldD);   

  for a=1:1:NIND  
      X           = phen1(a,:);
      %计算对应的目标值
      [epls]      = func_obj(X);
      E           = epls;
      JJ(a,1)     = E;
  end 

  Objvsel=(JJ);    
  [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
  gen=gen+1; 


  Error2(gen) = mean(JJ);

end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X = phen1(I,:);

save RGA.mat

```

4.算法理论概述
在认知异构网络(CHN)中,准确且高效地检测主用户信号的存在与否至关重要,这直接关系到次用户能否合理利用频谱资源,避免对主用户造成干扰。能量检测算法作为一种常用的频谱感知方法,其性能在很大程度上依赖于所选取的检测阈值。基于 GA 遗传优化的最优阈值计算方法为解决这一问题提供了有效的途径,它通过模拟生物进化过程,在复杂的参数空间中搜索出能使能量检测算法性能达到最优的阈值。

   认知异构网络由不同类型的接入技术、网络节点以及频谱资源构成。通常包含授权的主用户(Primary User,PU)和未授权的次用户(Secondary User,SU)。主用户拥有频谱的优先使用权,次用户需要在不干扰主用户通信的前提下伺机接入频谱。网络中的基站、接入点以及用户终端等设备在不同频段、不同传输特性下交互协作,形成一个多层次、多模式的通信架构。

image.png

   相较于传统的固定阈值或基于经验选取阈值的能量检测方法,基于 GA 遗传优化的算法能够自动适应复杂多变的 CHN 环境。它通过不断进化搜索,考虑到不同噪声水平、主用户信号强度变化等因素,找到使检测性能最优的阈值,有效提高频谱感知的准确性。

   GA 算法具有较强的全局搜索能力,能在较大的阈值取值范围内探索,避免陷入局部最优解,从而为能量检测提供更可靠的阈值设置,提升整个认知异构网络的频谱利用效率和通信质量。


   相较于传统的固定阈值或基于经验选取阈值的能量检测方法,基于 GA 遗传优化的算法能够自动适应复杂多变的 CHN 环境。它通过不断进化搜索,考虑到不同噪声水平、主用户信号强度变化等因素,找到使检测性能最优的阈值,有效提高频谱感知的准确性。

   GA 算法具有较强的全局搜索能力,能在较大的阈值取值范围内探索,避免陷入局部最优解,从而为能量检测提供更可靠的阈值设置,提升整个认知异构网络的频谱利用效率和通信质量。
相关文章
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
7天前
|
算法
基于PSO粒子群优化的多无人机路径规划matlab仿真,对比WOA优化算法
本程序基于粒子群优化(PSO)算法实现多无人机路径规划,并与鲸鱼优化算法(WOA)进行对比。使用MATLAB2022A运行,通过四个无人机的仿真,评估两种算法在能耗、复杂度、路径规划效果及收敛曲线等指标上的表现。算法原理源于1995年提出的群体智能优化,模拟鸟群觅食行为,在搜索空间中寻找最优解。环境建模采用栅格或几何法,考虑避障、速度限制等因素,将约束条件融入适应度函数。程序包含初始化粒子群、更新速度与位置、计算适应度值、迭代优化等步骤,最终输出最优路径。
|
6天前
|
机器学习/深度学习 数据采集 并行计算
基于WOA鲸鱼优化的TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于TCN(Temporal Convolutional Network)与WOA(Whale Optimization Algorithm)的时间序列预测算法。TCN通过扩张卷积捕捉时间序列长距离依赖关系,结合批归一化和激活函数提取特征;WOA用于优化TCN网络参数,提高预测精度。算法流程包括数据归一化、种群初始化、适应度计算及参数更新等步骤。程序基于Matlab2022a/2024b开发,完整版含详细中文注释与操作视频,运行效果无水印展示。适用于函数优化、机器学习调参及工程设计等领域复杂任务。
|
7天前
|
机器学习/深度学习 监控 算法
局域网行为监控软件 C# 多线程数据包捕获算法:基于 KMP 模式匹配的内容分析优化方案探索
本文探讨了一种结合KMP算法的多线程数据包捕获与分析方案,用于局域网行为监控。通过C#实现,该系统可高效检测敏感内容、管理URL访问、分析协议及审计日志。实验表明,相较于传统算法,KMP在处理大规模网络流量时效率显著提升。未来可在算法优化、多模式匹配及机器学习等领域进一步研究。
18 0
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于遗传优化GRNN和Hog特征提取的交通标志识别算法matlab仿真
本内容展示了一种基于遗传算法(GA)优化的广义回归神经网络(GRNN)与HOG特征提取的交通标志识别算法。通过算法运行效果预览,对比了GRNN与GA-GRNN在不同测试中的表现,并提供无水印完整程序运行结果。开发环境为Matlab 2022a,核心代码附有详细中文注释及操作视频。 理论部分涵盖HOG特征提取、GRNN模型原理及遗传算法优化GRNN平滑因子的关键技术。HOG通过梯度方向直方图描述目标形状,具有旋转不变性和光照鲁棒性;GRNN实现非线性回归,结合遗传算法优化参数以提升性能。此方法在精度、效率和鲁棒性间取得良好平衡,适用于实时车载系统,未来可探索HOG与CNN特征融合以应对复杂场景。
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容涵盖基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测算法。完整程序运行效果无水印,适用于Matlab2022a版本。核心代码配有详细中文注释及操作视频。理论部分阐述了传统方法(如ARIMA)在非线性预测中的局限性,以及TCN结合PSO优化超参数的优势。模型由因果卷积层和残差连接组成,通过迭代训练与评估选择最优超参数,最终实现高精度预测,广泛应用于金融、气象等领域。
|
1月前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
1月前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
7天前
|
算法 数据安全/隐私保护
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
本项目实现了一种基于Logistic Map混沌序列的数字信息加解密算法,使用MATLAB2022A开发并包含GUI操作界面。支持对文字、灰度图像、彩色图像和语音信号进行加密与解密处理。核心程序通过调整Logistic Map的参数生成伪随机密钥序列,确保加密的安全性。混沌系统的不可预测性和对初值的敏感依赖性是该算法的核心优势。示例展示了彩色图像、灰度图像、语音信号及文字信息的加解密效果,运行结果清晰准确,且完整程序输出无水印。
基于Logistic-Map混沌序列的数字信息加解密算法matlab仿真,支持对文字,灰度图,彩色图,语音进行加解密
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于PSO(粒子群优化)改进TCN(时间卷积神经网络)的时间序列预测方法。使用Matlab2022a运行,完整程序无水印,附带核心代码中文注释及操作视频。TCN通过因果卷积层与残差连接处理序列数据,PSO优化其卷积核权重等参数以降低预测误差。算法中,粒子根据个体与全局最优位置更新速度和位置,逐步逼近最佳参数组合,提升预测性能。

热门文章

最新文章