利用Zipkin对Spring Cloud应用进行服务追踪分析

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 本文简单介绍了如何利用Zipkin对SpringCloud应用进行服务分析。在实际的应用场景中,Zipkin可以结合压力测试工具一起使用,分析系统在大压力下的可用性和性能。

zipkin_docker_small

设想这么一种情况,如果你的微服务数量逐渐增大,服务间的依赖关系越来越复杂,怎么分析它们之间的调用关系及相互的影响?

服务追踪分析

一个由微服务构成的应用系统通过服务来划分问题域,通过REST请求服务API来连接服务来完成完整业务。对于入口的一个调用可能需要有多个后台服务协同完成,链路上任何一个调用超时或出错都可能造成前端请求的失败。服务的调用链也会越来越长,并形成一个树形的调用链。

trace_tree

随着服务的增多,对调用链的分析也会越来越负责。设想你在负责下面这个系统,其中每个小点都是一个微服务,他们之间的调用关系形成了复杂的网络。

internal_services

有密集恐惧症的同学就忽略吧。

针对服务化应用全链路追踪的问题,Google发表了Dapper论文,介绍了他们如何进行服务追踪分析。其基本思路是在服务调用的请求和响应中加入ID,标明上下游请求的关系。利用这些信息,可以可视化地分析服务调用链路和服务间的依赖关系。

Spring Cloud Sleuth和Zipkin

对应Dpper的开源实现是Zipkin,支持多种语言包括JavaScript,Python,Java, Scala, Ruby, C#, Go等。其中Java由多种不同的库来支持。

在这个示例中,我们准备开发两个基于Spring Cloud的应用,利用Spring Cloud Sleuth来和Zipkin进行集成。Spring Cloud Sleuth是对Zipkin的一个封装,对于Span、Trace等信息的生成、接入HTTP Request,以及向Zipkin Server发送采集信息等全部自动完成。

这是Spring Cloud Sleuth的概念图。

springcloud_sleuth_trace_id

服务REST调用

本次演示的服务有两个:tracedemo做为前端服务接收用户的请求,tracebackend为后端服务,tracedemo通过http协议调用后端服务。

利用RestTemplate进行HTTP请求调用

tracedemo应用通过restTemplate调用后端tracedemo服务,注意,URL中指明tracedemo的地址为backend

@RequestMapping("/")
public String callHome(){
    LOG.log(Level.INFO, "calling trace demo backend");
    return restTemplate.getForObject("http://backend:8090", String.class);
}

后端服务响应HTTP请求,输出一行日志后返回经典的“hello world”。

@RequestMapping("/")
public String home(){
    LOG.log(Level.INFO, "trace demo backend is being called");
    return "Hello World.";
}

引入Sleuth和Zipkin依赖包

可以看到,这是典型的两个spring应用通过RestTemplate进行访问的方式,哪在HTTP请求中注入追踪信息并把相关信息发送到Zipkin Server呢?答案在两个应用所加载的JAR包里。

本示例采用gradle来构建应用,在build.gradle中加载了sleuth和zipkin相关的JAR包:

dependencies {
    compile('org.springframework.cloud:spring-cloud-starter-sleuth')
    compile('org.springframework.cloud:spring-cloud-sleuth-zipkin')
    testCompile('org.springframework.boot:spring-boot-starter-test')
}

Spring应用在监测到Java依赖包中有sleuth和zipkin后,会自动在RestTemplate的调用过程中向HTTP请求注入追踪信息,并向Zipkin Server发送这些信息。

哪么Zipkin Server的地址又是在哪里指定的呢?答案是在application.properties中:

spring.zipkin.base-url=http://zipkin-server:9411

注意Zipkin Server的地址为zipkin-server

构建Docker镜像

为这两个服务创建相同的Dockerfile,用于生成Docker镜像:

FROM java:8-jre-alpine
RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.ustc.edu.cn/' /etc/apk/repositories
VOLUME /tmp
ADD build/libs/*.jar app.jar
RUN sh -c 'touch /app.jar'
ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

构建容器镜像的步骤如下:

cd tracedemo
./gradlew build
docker build -t zipkin-demo-frontend .

cd ../tracebackend
./gradlew build
docker build -t zipkin-demo-backend .

构建镜像完成后用docker push命令上传到你的镜像仓库。

Zipkin Server

利用Annotation声明方式创建Zipkin

在build.gradle中引入Zipkin依赖包。

dependencies {
    compile('org.springframework.boot:spring-boot-starter')
    compile('io.zipkin.java:zipkin-server')
    runtime('io.zipkin.java:zipkin-autoconfigure-ui')
    testCompile('org.springframework.boot:spring-boot-starter-test')
}

在主程序Class增加一个注解@EnableZipkinServer

@SpringBootApplication
@EnableZipkinServer
public class ZipkinApplication {

    public static void main(String[] args) {
        SpringApplication.run(ZipkinApplication.class, args);
    }
}

application.properties将端口指定为9411。

server.port=9411

构建Docker镜像

Dockerfile和前面的两个服务一样,这里就不重复了。

在阿里云容器服务上部署

创建docker-compose.yml文件,内容如下:

version: "2"
services:
  zipkin-server:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-server
    labels:
      aliyun.routing.port_9411: http://zipkin
    restart: always

  frontend:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-frontend
    labels:
      aliyun.routing.port_8080: http://frontend
    links:
      - zipkin-server
      - backend
    restart: always

  backend:
    image: registry.cn-hangzhou.aliyuncs.com/jingshanlb/zipkin-demo-backend
    links:
      - zipkin-server
    restart: always

在阿里云容器服务上使用编排模版创建应用,访问zipkin端点,可以看到服务分析的效果。

访问前端应用3次,页面显示3次服务调用。

trace1

点击其中任意一个trace,可以看到请求链路上不同span所花费的时间。

trace2

进入Dependencies页面,还可以看到服务之间的依赖关系。

trace3

从这个过程可以看出,Zipkin和Spring Cloud的集成做得很好。而且对服务追踪分析的可视化也很直观。

注意的是,在生产环境中还需要为Zipkin配置数据库,这里就不详细介绍了。

本文的示例代码在此:https://github.com/binblee/zipkin-demo

小节

本文简单介绍了如何利用Zipkin对SpringCloud应用进行服务分析。在实际的应用场景中,Zipkin可以结合压力测试工具一起使用,分析系统在大压力下的可用性和性能。这部分内容未来会在DevOps系列中继续介绍。

相关文章
|
2月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架。首先,确保开发环境已安装必要的工具,然后创建并配置 Spring Boot 项目,包括添加依赖和配置 Spring Security。接着,创建后端 API 和前端项目,配置动态路由和菜单。最后,运行项目并分享实践心得,包括版本兼容性、安全性、性能调优等方面。
192 1
|
8天前
|
Java 关系型数据库 Nacos
微服务SpringCloud链路追踪之Micrometer+Zipkin
SpringCloud+Openfeign远程调用,并用Mircrometer+Zipkin进行链路追踪
89 20
|
1月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。首先,创建并配置 Spring Boot 项目,实现后端 API;然后,使用 Ant Design Pro Vue 创建前端项目,配置动态路由和菜单。通过具体案例,展示了如何快速搭建高效、易维护的项目框架。
123 62
|
6天前
|
人工智能 前端开发 Java
Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!
本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。
152 0
|
28天前
|
XML Java 数据格式
Spring Core核心类库的功能与应用实践分析
【12月更文挑战第1天】大家好,今天我们来聊聊Spring Core这个强大的核心类库。Spring Core作为Spring框架的基础,提供了控制反转(IOC)和依赖注入(DI)等核心功能,以及企业级功能,如JNDI和定时任务等。通过本文,我们将从概述、功能点、背景、业务点、底层原理等多个方面深入剖析Spring Core,并通过多个Java示例展示其应用实践,同时指出对应实践的优缺点。
54 14
|
1月前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
229 12
基于开源框架Spring AI Alibaba快速构建Java应用
|
26天前
|
XML 前端开发 安全
Spring MVC:深入理解与应用实践
Spring MVC是Spring框架提供的一个用于构建Web应用程序的Model-View-Controller(MVC)实现。它通过分离业务逻辑、数据、显示来组织代码,使得Web应用程序的开发变得更加简洁和高效。本文将从概述、功能点、背景、业务点、底层原理等多个方面深入剖析Spring MVC,并通过多个Java示例展示其应用实践,同时指出对应实践的优缺点。
58 2
|
1月前
|
JSON 安全 算法
Spring Boot 应用如何实现 JWT 认证?
Spring Boot 应用如何实现 JWT 认证?
75 8
|
1月前
|
消息中间件 Java Kafka
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
Spring Boot 与 Apache Kafka 集成详解:构建高效消息驱动应用
44 1
|
1月前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
65 3