Spring AI Alibaba + 通义千问,开发AI应用如此简单!!!

简介: 本文介绍了如何使用Spring AI Alibaba开发一个简单的AI对话应用。通过引入`spring-ai-alibaba-starter`依赖和配置API密钥,结合Spring Boot项目,只需几行代码即可实现与AI模型的交互。具体步骤包括创建Spring Boot项目、编写Controller处理对话请求以及前端页面展示对话内容。此外,文章还介绍了如何通过添加对话记忆功能,使AI能够理解上下文并进行连贯对话。最后,总结了Spring AI为Java开发者带来的便利,简化了AI应用的开发流程。

前言

没想到只会Java的我,有一天也能开发一个AI应用,怎么说呢?

Spring 官方自从发布了 Spring AI,基于 Spring AI 和通义千问大模型的 Spring AI Alibaba 也跟随其后。Alibaba 的出现也就意味着国内的 Javaer 们也能很轻松的开发AI应用了。那么本文就基于 Spring AI Alibaba 开发一个简单的 AI 对话应用。

效果展示

Spring AI 实现的AI对话

实现步骤

基于 Spring AI Alibaba 实现这样一个AI对话非常简单,只需要几行代码就可以完成。可以跟着下面的步骤操作:

创建一个 SpringBoot 项目

Spring AI Alibaba 提供了 SpringBoot starter。所以,第一步就是创建一个SpringBoot项目引入依赖以及配置。

pom.xml文件添加spring-ai-alibaba-starter依赖

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba.cloud.ai</groupId>
        <artifactId>spring-ai-alibaba-starter</artifactId>
        <version>1.0.0-M3.1</version>
    </dependency>
</dependencies>

application.yml添加

server:
  port: 8080

spring:
  application:
    name: spring-ai-alibaba-chat
  ai:
    dashscope:
      api-key: xxxx

配置中的api-key是阿里云百炼大模型平台的凭证,AI的实现最终会调用该模型。

api-key 申请

这里有两个事项需要注意:

  1. Spring AI Alibaba 基于 Spring Boot 3.x 开发,所以JDK 版本要求为 17 及以上。
  2. spring-ai 相关依赖包还没有发布到中央仓库,本地 Maven 仓库要添加以下配置。
<repositories>
  <repository>
    <id>spring-milestones</id>
    <name>Spring Milestones</name>
    <url>https://repo.spring.io/milestone</url>
    <snapshots>
      <enabled>false</enabled>
    </snapshots>
  </repository>
</repositories>

编写与大模型交互的 Controller

项目创建成功之后,只需要写一个Controller就可以实现与AI对话,代码如下:

@RestController
@RequestMapping("/ai")
public class AIChatController {
   

    private final ChatClient chatClient;

    public AIChatController(ChatClient.Builder builder) {
   
        this.chatClient = builder
                .build();
    }


    @GetMapping("/chat")
    public String chat(String message) {
   
        return this.chatClient.prompt()
                .user(message)
                .call()
                .content();
    }
}

代码中的ChatClient类似于应用程序开发中的服务层,只不过这里由spring-ai-alibaba-starter自动初始化了实例,可以直接提供 AI 服务,最终会调用百炼大模型。

此时就可以启动应用,通过浏览器访问localhost:8080/ai/chat?message= 进行对话。

编写通过页面进行对话的 html

为了直观的展示效果,简单实现一个前端和接口交互,通过页面进行AI对话。

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <script src="js/marked.min.js"></script>
    <title></title>
    <style>
        body {
    
            background-color: #f8f9fa;
            font-family: Arial, sans-serif;
        }

        .container {
    
            margin: 50px auto;
            width: 800px;
            background-color: #fff;
            padding: 20px;
            border-radius: 5px;
            box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1);
        }

        h1 {
    
            text-align: center;
            margin-bottom: 30px;
        }

        label {
    
            display: block;
            margin-bottom: 10px;
            color: #333;
        }

        input[type="text"] {
    
            width: 85%;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 3px;
        }

        input[type="submit"] {
    
            background-color: #2ecc71;
            color: #fff;
            border: none;
            padding: 10px 20px;
            border-radius: 3px;
            cursor: pointer;
            width: 10%;
        }

        .chat-box {
    
            width: 100%;
            height: 500px;
            padding: 10px;
            border: 1px solid #ccc;
            border-radius: 3px;
            overflow-y: scroll;
        }

        .message {
    
            margin-bottom: 10px;
            padding: 10px;
            background-color: #f1f1f1;
            border-radius: 3px;
        }

        .user-message {
    
            background-color: #2ecc71;
            color: #fff;
        }

        .bot-message {
    
            background-color: #e6aa6b;
            color: #fff;
        }

        .loader {
    
            text-align: center;
        }

        .loader::after {
    
            content: "";
            display: inline-block;
            width: 20px;
            height: 20px;
            border-radius: 50%;
            border: 2px solid #ccc;
            border-top-color: #2ecc71;
            animation: spin 1s infinite linear;
        }

        @keyframes spin {
    
            to {
    
                transform: rotate(360deg);
            }
        }
    </style>
</head>
<body>
<div class="container">
    <h1>AI 对话</h1>
    <form id="form" style="width: 47%;position: absolute;bottom: 150px;margin-left:15px">
        <input type="text" id="message" name="message" placeholder="输入你的问题">
        <input type="submit" value="发送">
    </form>
    <br>
    <div id="loader" class="loader" style="display: none;"></div>
    <div id="chat-box" class="chat-box"></div>
</div>

<script>
    var loader = document.getElementById("loader");

    document.getElementById("form").addEventListener("submit", function(event) {
    
        event.preventDefault();

        var messageInput = document.getElementById("message");
        var message = messageInput.value;
        messageInput.value = "";

        var chatBox = document.getElementById("chat-box");

        var userMessage = document.createElement("div");
        userMessage.className = "message";
        userMessage.textContent = "我: " + message;
        chatBox.appendChild(userMessage);
        chatBox.scrollTop = chatBox.scrollHeight;

        loader.style.display = "block";

        var xhr = new XMLHttpRequest();
        xhr.open("GET", "http://localhost:8080/ai/chat?message=" + encodeURIComponent(message), true);
        xhr.onreadystatechange = function() {
    
            if (xhr.readyState === 4) {
    
                loader.style.display = "none";

                if (xhr.status === 200) {
    
                    var response = xhr.responseText;

                    var botMessage = document.createElement("div");
                    botMessage.className = "message bot-message";

                    var botMessageText = document.createElement("span");
                    botMessageText.className = "message-text";
                    botMessage.appendChild(botMessageText);
                    botMessageText.innerHTML = marked.marked(response);

                    chatBox.appendChild(botMessage);
                    chatBox.scrollTop = chatBox.scrollHeight;
                } else if (xhr.status === 400) {
    
                    var error = JSON.parse(xhr.responseText);

                    var errorMessage = document.createElement("div");
                    errorMessage.className = "message bot-message";
                    errorMessage.textContent = "Bot: " + error.message;
                    chatBox.appendChild(errorMessage);
                    chatBox.scrollTop = chatBox.scrollHeight;
                } else {
    
                    var errorMessage = document.createElement("div");
                    errorMessage.className = "message bot-message";
                    errorMessage.textContent = "Bot: Failed to connect to the backend service. Please make sure the backend service is running.";
                    chatBox.appendChild(errorMessage);
                    chatBox.scrollTop = chatBox.scrollHeight;
                }
            }
        };

        xhr.onloadstart = function() {
    
            loader.style.display = "block";
        };

        xhr.onloadend = function() {
    
            loader.style.display = "none";
        };

        xhr.send();
    });
</script>
</body>
</html>

js 引入的 marked.min.js 可以去GitHub或者联系我获取。

至此,就实现了文中开头的AI对话效果。

需要了解的基本知识

上面的示例其实就是一个SpringBoot项目,对于Javaer肯定不陌生。而对于没有人工智能相关背景的人来说,如果想要基于 Spring AI 开发一个AI应用产品,还是需要了解一些基本概念的。

  • AI 模型:AI 模型是旨在处理和生成信息的算法,通常模仿人类的认知功能。我们现在基本上听到的大模型都属于生成式AI模型,例如通义千问。
  • Prompt:提示词作为生成式大模型的输入,可以指导模型生成特定的输出。如果搭建过智能体就会知道,创建一个智能体首先要设置一些提示词。
  • Token:token作为 AI 模型工作原理的基石,输入时,模型将单词转换为token,输出时,将token转换回单词。在现在的AI模型背景下,token就相当于金钱,一次调用的费用就越高。
  • 模型的认知:一个模型的诞生需要在海量的训练集中进行学习,所以它的认知中没有未来的知识。如果想让模型对现有知识产生认知,有微调、检索增强生成 (RAG)、函数调用这几种方式。

对于本文示例中来说,每一次的对话就是模型的一次token输入和输出。

实现有记忆的对话

如果运行了上面的示例,并且进行了几轮对话,会发现大模型并不会理解上下文,也无法实现连贯的对话。

就如上面所说的“模型的认知”,大模型不会记录对话,所以不会产生上下文关联。例如我接下来的问答中,并没有按照我的提问生成“冒险的”故事,只是“冒险的”进行了说明。

Spring AI 实现的AI对话

那如何让大模型能够追踪、理解并利用先前对话上下文的能力?

spring-ai 支持基于chat memory的对话记忆。在上面的代码中,只需要在构建chatClient时添加两行代码。

private ChatMemory chatMemory = new InMemoryChatMemory();                                            

public AIChatController(ChatClient.Builder builder) {
                                                   
    this.chatClient = builder                                                                        
            .defaultAdvisors(new MessageChatMemoryAdvisor(chatMemory, UUID.randomUUID().toString(), 10))
            .build();                                                                                
}

UUID 会作为此次对话的唯一标识,ChatMemory会将之前的对话内容记录下来,每次对模型的输入就是历史的对话记录,最终实现对话记忆。

这种做法最终会影响使用大模型的成本,就如上面所说,输入和输出都会影响总token数量,而token就相当于金钱。

最后看一下对话记忆效果

总结

Spring AI解决了AI集成的核心难题:即无缝连接企业数据、API与AI模型,同时也简化了Java 开发人员对AI应用的编程复杂度,还提供检索增强生成 (RAG)、函数调用等关键功能。对于Java 开发人员来讲,通过 Spring AI 可以探索更多的 AI 应用场景。

相关文章
|
21天前
|
人工智能 算法 前端开发
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
OmAgent 是 Om AI 与浙江大学联合开源的多模态语言代理框架,支持多设备连接、高效模型集成,助力开发者快速构建复杂的多模态代理应用。
172 72
OmAgent:轻松构建在终端设备上运行的 AI 应用,赋能手机、穿戴设备、摄像头等多种设备
|
4天前
|
人工智能 自然语言处理 搜索推荐
浙大通义联手推出慢思考长文本生成框架OmniThink,让AI写作突破知识边界
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。
|
7天前
|
人工智能 自然语言处理 搜索推荐
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
75 23
【上篇】-分两篇步骤介绍-如何用topview生成和自定义数字人-关于AI的使用和应用-如何生成数字人-优雅草卓伊凡-如何生成AI数字人
|
2天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
198 13
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
18天前
|
存储 人工智能 自然语言处理
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。
147 12
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
|
1天前
|
人工智能 自然语言处理 数据可视化
Cursor 为低代码加速,AI 生成应用新体验!
通过连接 Cursor,打破了传统低代码开发的局限,我们无需编写一行代码,甚至连拖拉拽这种操作都可以抛诸脑后。只需通过与 Cursor 进行自然语言对话,用清晰的文字描述自己的应用需求,就能轻松创建出一个完整的低代码应用。
207 8
|
4天前
|
人工智能 IDE 程序员
通义灵码 2.0 AI 程序员下载安装
通义灵码2.0 AI程序员支持JetBrains IDEs、Visual Studio Code及远程开发场景,暂不支持Visual Studio。用户可通过插件市场搜索“TONGYI Lingma”安装,确保版本升级至2.0以上。安装后登录阿里云账号即可使用,个人版和企业版均免费。新手可参考官方指南进行IDE安装配置。
181 7
|
4天前
|
人工智能 IDE 程序员
与1.0 相比,通义灵码 2.0 AI 程序员有哪些功能、亮点、优势、场景?
通义灵码2.0相比1.0新增了工程级编码任务、单元测试生成和图片多模态问答等功能,支持多文件代码修改、批量生成单元测试及根据图片内容生成代码建议。亮点包括支持主流IDE、垂直智能体覆盖更多场景、企业级检索增强和灵活对话交互体验。技术优势涵盖多模态上下文感知、快速推理、企业数据个性化及一流代码生成效果。典型应用场景有新功能开发、跨语言编程、单元测试自动生成和错误排查修复。
114 7
|
15天前
|
人工智能 自然语言处理 JavaScript
微软开源课程!21节课程教你开发生成式 AI 应用所需了解的一切
微软推出的生成式 AI 入门课程,涵盖 21 节课程,帮助开发者快速掌握生成式 AI 应用开发,支持 Python 和 TypeScript 代码示例。
205 14
|
23天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
124 21

热门文章

最新文章