15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
简介:

Accelerating Neural Transformer via an Average Attention Network
@bzhang 推荐
Neural Machine Translation

本文主要研究机器翻译领域最先进的 Transformer 系统(Attention is all you need)。针对该系统解码效率底下的问题,本文在模型设计层面提出平均注意网络,在不损失翻译质量的情况下,本文所提模型有效提升解码速率 4~7 倍。

本文在 WMT 六个语言对 12 个翻译方向上进行了实验论证,结果一致地表明本文所提模型可以有效地提升解码速率,并生成高质量译文。

论文链接
https://www.paperweekly.site/papers/1929
代码链接
https://github.com/bzhangXMU/transformer-aan

Cross Domain Regularization for Neural Ranking Models Using Adversarial Learning
@Ttssxuan 推荐
Adversarial Learning

本文来自 SIGIR ’18。深度表征学习网络可以自动地学习数据集中数据的表示,但是这也存在局限性,其被局限到被采样的数据中,而对未见过的数据域泛化能力有限。本文借助对抗网络对表征学习网络进行正则化,其分类器向表征网络提供负反馈,使其不会陷入特定数据域的表征学习,从而提升网络对的泛化能力。

论文链接
https://www.paperweekly.site/papers/1923

Hierarchical Neural Story Generation
@llamazing 推荐
Text Generation

本文来自 Facebook AI Research,论文使用层次话结构做故事生成,解决长依赖性问题。少信息->多信息,decoder self-attention + model fusion,decoder 时 word 从 word prob top10 中随机选取,可减少生成重复文本。

论文链接
https://www.paperweekly.site/papers/1932

DOTA: A Large-scale Dataset for Object Detection in Aerial Images
@paperweekly 推荐
Object Detection

本文提出了一个数据集,包含 2806 张遥感图像(大小约 4000*4000),188,282 个 instances,分为 15 个类别。

论文链接
http://www.paperweekly.site/papers/1907

代码链接
https://github.com/jessemelpolio/Faster_RCNN_for_DOTA
数据集链接
https://captain-whu.github.io/DOTA/dataset.html

Spiking Deep Residual Network
@chlr1995 推荐
Spiking Neural Network

脉冲神经网络(SNN)在生物理论中备受关注。理论上脉冲神经网络应该与人工神经网络的性能是相同的,但是训练深层的 SNN 是非常困难的。本文提出了一种脉冲版本的 ResNet,并且在 MNIST、CIFAR 等数据集上实验得到了 state of the art的结果。

论文链接
https://www.paperweekly.site/papers/1916

Deep Active Learning for Named Entity Recognition
@cmdjeu 推荐
Named Entity Recognition

本文是亚马逊和 UT Austin 发表于 ICLR 2018 的工作,论文在命名实体识别的方法上引入主动学习,在少量数据集即可达到较优结果,感觉也可以扩展到其他自然语言方向。

论文链接
https://www.paperweekly.site/papers/1919

An Universal Image Attractiveness Ranking Framework
@Ttssxuan 推荐
Image Ranking

本文来自微软,本文结合 deep convolutional neural network 和 rank net,设计对成对的图片的 Attractiveness 排序模型。 模型首先使用深度卷积得到网络图片的 attractiveness score 的均值和方差,然后使用设计好的标准,对两个图片之间的关系进行预测。

论文把模型排序结果和搜索引擎排序结果比较,质量得到较明显提升

论文链接
http://www.paperweekly.site/papers/1908

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
@xavierzw 推荐
Network Embedding


本文来自清华和微软。论文创造性地将 DeepWalk,LINE,Node2Vec 等 network embedding 的方法,通过 Matrix Factorization 框架来统一表示。

进一步地基于 Matrix Factorization 的思路,作者提出 NetMF 方法,实验证明优于 DeepWalk,LINE 的算法。此外作者也给出了相关 Upper Bound 的严格数学证明。

论文链接
https://www.paperweekly.site/papers/1924

代码链接
https://github.com/xptree/NetMF

Global Encoding for Abstractive Summarization
@llamazing 推荐
Abstractive Summarization

本文是北京大学发表于 ACL 2018 的工作,论文提出用 Global Encoding 解决句内重复和输入输出语义无关问题,Convolutional Gated Unit + Self Attention。

论文链接
https://www.paperweekly.site/papers/1930

Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition
@RTM 推荐
Image Recognition

本文是 CVPR 2017 的一篇 Oral 文章,主要工作集中在细粒度图片识别。文中提出了一种级联的网络结构,通过 anattention proposal sub-network 实现粗粒度图片到细粒度图片的获取和识别,文中充分利用了卷积神经网络的注意力机制,在原始图片的基础上裁剪、放大识别图片中目标。

论文链接
https://www.paperweekly.site/papers/1904

An Attention Mechanism for Answer Selection Using a Combined Global and Local View
@IndexFziQ 推荐
Answer Selection

本文来自 Digitalgenius,提出用 attention 根据不同的输入粒度计算相似度,将答案的特定部分中的局部信息与整个问题的全局表示相结合。Answer selection 的关键就是文本相似度的计算,文章有可以学习的地方。

最后在 InsuranceQA 上评估系统,实验目的是看注意力机制关注的哪些部分文本,并探究其在不同参数设置下的表现,结果比 IBM(Improved Representation Learning for Question Answer Matching)提出的 Attention LSTM 稍微提高了一些。

论文链接
https://www.paperweekly.site/papers/1918

Deep & Cross Network for Ad Click Predictions
@c0de 推荐
Ad Click Predictions

本文来自斯坦福大学和 Google,论文利用深度学习自动高效得学习高阶交叉特征,免去特征工程。

论文链接
https://www.paperweekly.site/papers/1898

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
@liria 推荐
Convolutional Neural Network

本文来自斯坦福吴恩达组,该论文主要做的事情建立了从单导联的心电信号到 14 种心脏疾病的模型,模型是一个 34 层的 CNN 网络。文章定义了 12 种心脏异常状态和窦性心率及噪声,共 14 种。模型主要是 34 层的残差 CNN 将 ECG 序列映射到 label 序列。

本文声称自己的模型超过了心电科的医生,不同于传统的提取各种统计指标再训练模型,是一种直接从 sequnce 训练的模型,确实能够减少很多工作量。

论文链接
https://www.paperweekly.site/papers/1921

Efficient Natural Language Response Suggestion for Smart Reply
@mev 推荐
Natural Language Understanding

本文介绍了 Gmail Smart Reply 的一个检索式实现,这个结果应该是实际产品化了的,有一定的参考价值。文章中使用了大量的方式来降低模型的 latency,并且使最终结果保持在较高精度。

比较有意思的是文中有一个实验,使用句子的 ngram embedding sum 来表示句子,然后通过一个 RNN 重新生成原句,在几十万词的数据集下得到了 ppl 为 1.2 的结果,证明了仅仅使用 ngram 就可以捕捉到足够的句子序列信息了。

原文发布时间为:2018-05-16
本文作者:让你更懂AI
本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”。

相关文章
|
7天前
|
人工智能 自然语言处理 机器人
今日AI论文推荐:ReCamMaster、PLADIS、SmolDocling、FlowTok
由浙江大学、快手科技等机构提出的ReCamMaster是一个相机控制的生成式视频重渲染框架,可以使用新的相机轨迹重现输入视频的动态场景。该工作的核心创新在于利用预训练的文本到视频模型的生成能力,通过一种简单但强大的视频条件机制。为克服高质量训练数据的稀缺问题,研究者使用虚幻引擎5构建了一个全面的多相机同步视频数据集,涵盖多样化的场景和相机运动。
146 2
今日AI论文推荐:ReCamMaster、PLADIS、SmolDocling、FlowTok
|
9天前
|
人工智能 安全 测试技术
本周 AI Benchmark 方向论文推荐
由北京大学和微软亚洲研究院的魏李等人提出的 FEA-Bench,是一个专为评估大型语言模型(LLMs)在代码库级别进行增量开发能力的基准测试。它从 83 个 GitHub 仓库中收集了 1,401 个任务实例,专注于新功能的实现。研究表明,即使是先进的 LLMs 在此任务中的表现仍远低于预期,揭示了仓库级代码开发的重大挑战。
57 0
|
13天前
|
人工智能 自然语言处理 算法
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
AI-Researcher 是香港大学数据科学实验室推出的开源自动化科研工具,基于大型语言模型(LLM)代理,支持从研究想法到论文发表的全流程自动化,涵盖文献综述、算法设计、实验验证和论文撰写等功能。
145 8
AI-Researcher:告别熬夜肝论文!港大开源AI科研神器,从选题到发表全自动
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
387 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
2月前
|
人工智能
Scaling Laws终结,量化无用,AI大佬都在审视这篇论文
《Scaling Laws for Precision》论文提出“精度感知”的扩展理论,将精度纳入模型发展的核心考量,弥补了传统AI模型发展理论忽视精度的不足。研究发现低精度训练会降低模型的有效参数计数,影响性能,并预测了低精度训练和后训练量化带来的损失。作者通过大量实验验证了理论的可靠性和有效性,为计算资源有限情况下如何平衡模型规模和精度提供了新思路。然而,该研究也引发了关于精度与性能权衡复杂性的争议。
99 27
|
27天前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
|
2月前
|
人工智能 自然语言处理 测试技术
阿里云通义实验室自然语言处理方向负责人黄非:通义灵码2.0,迈入 Agentic AI
在通义灵码 2.0 发布会上,阿里云通义实验室自然语言处理方向负责人黄非分享了代码大模型的演进。过去一年来,随着大模型技术的发展,特别是智能体技术的深入应用,通义灵码也在智能体的基础上研发了针对于整个软件研发流程的不同任务的智能体,这里既包括单智能体,也包括多智能体合并框架,在这样的基础上我们研发了通义灵码2.0。
266 21
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言
自然语言处理(NLP)是AI的重要分支,旨在让计算机理解人类语言。本文探讨了深度学习在NLP中的应用,包括其基本任务、优势、常见模型及具体案例,如文本分类、情感分析等,并讨论了Python的相关工具和库,以及面临的挑战和未来趋势。
242 1
|
24天前
|
人工智能 弹性计算 Ubuntu
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
本文介绍了如何使用阿里云提供的DeepSeek-R1大模型解决方案,通过Chatbox和Dify平台调用百炼API,实现稳定且高效的模型应用。首先,文章详细描述了如何通过Chatbox配置API并开始对话,适合普通用户快速上手。接着,深入探讨了使用Dify部署AI应用的过程,包括选购云服务器、安装Dify、配置对接DeepSeek-R1模型及创建工作流,展示了更复杂场景下的应用潜力。最后,对比了Chatbox与Dify的输出效果,证明Dify能提供更详尽、精准的回复。总结指出,阿里云的解决方案不仅操作简便,还为专业用户提供了强大的功能支持,极大提升了用户体验和应用效率。
1103 19
从零开始即刻拥有 DeepSeek-R1 满血版并使用 Dify 部署 AI 应用
|
17天前
|
人工智能 前端开发 JavaScript
AI程序员:通义灵码 2.0应用VScode前端开发深度体验
AI程序员:通义灵码 2.0应用VScode前端开发深度体验,在软件开发领域,人工智能技术的融入正深刻改变着程序员的工作方式。通义灵码 2.0 作为一款先进的 AI 编程助手,与广受欢迎的代码编辑器 Visual Studio Code(VScode)相结合,为前端开发带来了全新的可能性。本文将详细分享通义灵码 2.0 在 VScode 前端开发环境中的深度使用体验。
154 2

热门文章

最新文章