15 篇最新 AI 论文来袭!NLP、CV...人人有份 | 本周值得读

简介:

Accelerating Neural Transformer via an Average Attention Network
@bzhang 推荐
Neural Machine Translation

本文主要研究机器翻译领域最先进的 Transformer 系统(Attention is all you need)。针对该系统解码效率底下的问题,本文在模型设计层面提出平均注意网络,在不损失翻译质量的情况下,本文所提模型有效提升解码速率 4~7 倍。

本文在 WMT 六个语言对 12 个翻译方向上进行了实验论证,结果一致地表明本文所提模型可以有效地提升解码速率,并生成高质量译文。

论文链接
https://www.paperweekly.site/papers/1929
代码链接
https://github.com/bzhangXMU/transformer-aan

Cross Domain Regularization for Neural Ranking Models Using Adversarial Learning
@Ttssxuan 推荐
Adversarial Learning

本文来自 SIGIR ’18。深度表征学习网络可以自动地学习数据集中数据的表示,但是这也存在局限性,其被局限到被采样的数据中,而对未见过的数据域泛化能力有限。本文借助对抗网络对表征学习网络进行正则化,其分类器向表征网络提供负反馈,使其不会陷入特定数据域的表征学习,从而提升网络对的泛化能力。

论文链接
https://www.paperweekly.site/papers/1923

Hierarchical Neural Story Generation
@llamazing 推荐
Text Generation

本文来自 Facebook AI Research,论文使用层次话结构做故事生成,解决长依赖性问题。少信息->多信息,decoder self-attention + model fusion,decoder 时 word 从 word prob top10 中随机选取,可减少生成重复文本。

论文链接
https://www.paperweekly.site/papers/1932

DOTA: A Large-scale Dataset for Object Detection in Aerial Images
@paperweekly 推荐
Object Detection

本文提出了一个数据集,包含 2806 张遥感图像(大小约 4000*4000),188,282 个 instances,分为 15 个类别。

论文链接
http://www.paperweekly.site/papers/1907

代码链接
https://github.com/jessemelpolio/Faster_RCNN_for_DOTA
数据集链接
https://captain-whu.github.io/DOTA/dataset.html

Spiking Deep Residual Network
@chlr1995 推荐
Spiking Neural Network

脉冲神经网络(SNN)在生物理论中备受关注。理论上脉冲神经网络应该与人工神经网络的性能是相同的,但是训练深层的 SNN 是非常困难的。本文提出了一种脉冲版本的 ResNet,并且在 MNIST、CIFAR 等数据集上实验得到了 state of the art的结果。

论文链接
https://www.paperweekly.site/papers/1916

Deep Active Learning for Named Entity Recognition
@cmdjeu 推荐
Named Entity Recognition

本文是亚马逊和 UT Austin 发表于 ICLR 2018 的工作,论文在命名实体识别的方法上引入主动学习,在少量数据集即可达到较优结果,感觉也可以扩展到其他自然语言方向。

论文链接
https://www.paperweekly.site/papers/1919

An Universal Image Attractiveness Ranking Framework
@Ttssxuan 推荐
Image Ranking

本文来自微软,本文结合 deep convolutional neural network 和 rank net,设计对成对的图片的 Attractiveness 排序模型。 模型首先使用深度卷积得到网络图片的 attractiveness score 的均值和方差,然后使用设计好的标准,对两个图片之间的关系进行预测。

论文把模型排序结果和搜索引擎排序结果比较,质量得到较明显提升

论文链接
http://www.paperweekly.site/papers/1908

Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec
@xavierzw 推荐
Network Embedding


本文来自清华和微软。论文创造性地将 DeepWalk,LINE,Node2Vec 等 network embedding 的方法,通过 Matrix Factorization 框架来统一表示。

进一步地基于 Matrix Factorization 的思路,作者提出 NetMF 方法,实验证明优于 DeepWalk,LINE 的算法。此外作者也给出了相关 Upper Bound 的严格数学证明。

论文链接
https://www.paperweekly.site/papers/1924

代码链接
https://github.com/xptree/NetMF

Global Encoding for Abstractive Summarization
@llamazing 推荐
Abstractive Summarization

本文是北京大学发表于 ACL 2018 的工作,论文提出用 Global Encoding 解决句内重复和输入输出语义无关问题,Convolutional Gated Unit + Self Attention。

论文链接
https://www.paperweekly.site/papers/1930

Look Closer to See Better: Recurrent Attention Convolutional Neural Network for Fine-grained Image Recognition
@RTM 推荐
Image Recognition

本文是 CVPR 2017 的一篇 Oral 文章,主要工作集中在细粒度图片识别。文中提出了一种级联的网络结构,通过 anattention proposal sub-network 实现粗粒度图片到细粒度图片的获取和识别,文中充分利用了卷积神经网络的注意力机制,在原始图片的基础上裁剪、放大识别图片中目标。

论文链接
https://www.paperweekly.site/papers/1904

An Attention Mechanism for Answer Selection Using a Combined Global and Local View
@IndexFziQ 推荐
Answer Selection

本文来自 Digitalgenius,提出用 attention 根据不同的输入粒度计算相似度,将答案的特定部分中的局部信息与整个问题的全局表示相结合。Answer selection 的关键就是文本相似度的计算,文章有可以学习的地方。

最后在 InsuranceQA 上评估系统,实验目的是看注意力机制关注的哪些部分文本,并探究其在不同参数设置下的表现,结果比 IBM(Improved Representation Learning for Question Answer Matching)提出的 Attention LSTM 稍微提高了一些。

论文链接
https://www.paperweekly.site/papers/1918

Deep & Cross Network for Ad Click Predictions
@c0de 推荐
Ad Click Predictions

本文来自斯坦福大学和 Google,论文利用深度学习自动高效得学习高阶交叉特征,免去特征工程。

论文链接
https://www.paperweekly.site/papers/1898

Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks
@liria 推荐
Convolutional Neural Network

本文来自斯坦福吴恩达组,该论文主要做的事情建立了从单导联的心电信号到 14 种心脏疾病的模型,模型是一个 34 层的 CNN 网络。文章定义了 12 种心脏异常状态和窦性心率及噪声,共 14 种。模型主要是 34 层的残差 CNN 将 ECG 序列映射到 label 序列。

本文声称自己的模型超过了心电科的医生,不同于传统的提取各种统计指标再训练模型,是一种直接从 sequnce 训练的模型,确实能够减少很多工作量。

论文链接
https://www.paperweekly.site/papers/1921

Efficient Natural Language Response Suggestion for Smart Reply
@mev 推荐
Natural Language Understanding

本文介绍了 Gmail Smart Reply 的一个检索式实现,这个结果应该是实际产品化了的,有一定的参考价值。文章中使用了大量的方式来降低模型的 latency,并且使最终结果保持在较高精度。

比较有意思的是文中有一个实验,使用句子的 ngram embedding sum 来表示句子,然后通过一个 RNN 重新生成原句,在几十万词的数据集下得到了 ppl 为 1.2 的结果,证明了仅仅使用 ngram 就可以捕捉到足够的句子序列信息了。

原文发布时间为:2018-05-16
本文作者:让你更懂AI
本文来自云栖社区合作伙伴“PaperWeekly”,了解相关信息可以关注“PaperWeekly”。

相关文章
|
4月前
|
人工智能 物联网 调度
边缘大型AI模型:协作部署与物联网应用——论文阅读
论文《边缘大型AI模型:协作部署与物联网应用》系统探讨了将大模型(LAM)部署于边缘网络以赋能物联网的前沿框架。针对传统云端部署高延迟、隐私差的问题,提出“边缘LAM”新范式,通过联邦微调、专家混合与思维链推理等技术,实现低延迟、高隐私的分布式智能。
883 6
边缘大型AI模型:协作部署与物联网应用——论文阅读
|
5月前
|
机器学习/深度学习 人工智能 资源调度
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
本文探讨智能家居中AI决策的可解释性,提出以人为中心的XAI框架。通过SHAP、DeepLIFT等技术提升模型透明度,结合用户认知与需求,构建三层解释体系,增强信任与交互效能。
398 19
智能家居环境中的AI决策解释:实现以人为中心的可解释性——论文阅读
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
SurveyGO是清华与面壁智能联合开源的AI论文写作工具,采用LLMxMapReduce-V2技术实现文献智能聚合,能根据用户输入主题快速生成结构严谨、引用可靠的学术综述。
1354 1
还在想开题报告?SurveyGO卷姬:清华开源学术论文AI写作神器,一键生成文献综述
|
5月前
|
机器学习/深度学习 存储 自然语言处理
NLP参数高效迁移学习:Adapter方法——论文简读
本研究深入探讨了自然语言处理中参数高效的迁移学习方法——Adapter。通过在预训练模型中引入小型可训练模块,仅调整少量额外参数即可完成模型适配。理论分析表明,该方法在初始化时保持网络行为稳定,并通过瓶颈结构大幅压缩参数规模。实验结果显示,Adapter在GLUE基准上仅用3.6%的参数便达到接近全微调的性能,且对学习率具有更强的鲁棒性。相比传统微调和其他参数高效方法,Adapter在多任务场景下展现出更优的存储效率与泛化能力,为大规模模型的实际部署提供了高效可行的解决方案。
370 7
|
5月前
|
机器学习/深度学习 资源调度 算法框架/工具
AI-ANNE: 将神经网络迁移到微控制器的深度探索——论文阅读
AI-ANNE框架探索将深度学习模型迁移至微控制器的可行路径,基于MicroPython在Raspberry Pi Pico上实现神经网络核心组件,支持本地化推理,推动TinyML在边缘设备中的应用。
318 10
|
5月前
|
人工智能 算法 开发者
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)
2025年高教社杯E题——AI 辅助智能体测全国大学生数学建模(思路、代码、论文)
538 1
|
10月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
1332 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1081 50
|
5月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1182 57
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
596 30

热门文章

最新文章