Data Formulator:微软开源的数据可视化 AI 工具,通过自然语言交互快速创建复杂的数据图表

本文涉及的产品
图像搜索,任选一个服务类型 1个月
简介: Data Formulator 是微软研究院推出的开源 AI 数据可视化工具,结合图形化界面和自然语言输入,帮助用户快速创建复杂的可视化图表。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


大家好,我是蚝油菜花,今天跟大家分享一下 Data Formulator 这个由微软研究院推出的开源 AI 数据可视化工具。

🚀 快速阅读

Data Formulator 是一款强大的 AI 数据可视化工具,帮助用户通过简单交互和指令快速创建丰富的可视化图表。

  1. 核心功能:结合图形化界面与自然语言输入,支持复杂数据转换和迭代设计。
  2. 技术原理:多模态交互界面、概念绑定与数据转换、AI 代理与代码生成。

Data Formulator 是什么

Data Formulator

Data Formulator 是微软研究院推出的一款开源 AI 数据可视化工具,旨在帮助用户通过简单的交互和指令快速创建复杂的可视化图表。它结合了图形化用户界面(GUI)和自然语言输入(NL),用户可以通过拖拽操作或直接输入需求来设计图表,AI 负责处理复杂的数据转换和计算。

Data Formulator 的目标是让用户能够更高效地探索和理解数据,无需编写复杂的代码或进行繁琐的数据预处理。无论是数据分析专家还是初学者,都可以通过这款工具轻松创建专业的可视化图表。

Data Formulator 的主要功能

  • 结合图形化界面与自然语言输入:用户可以通过拖拽操作将数据字段放置到图表属性中,也可以通过自然语言描述需求,AI 会根据指令完成数据转换和可视化。
  • 支持复杂数据转换:用户可以在编码栏中输入不存在的数据字段名称,AI 会根据自然语言提示进行数据计算和转换,生成新的可视化内容。
  • 迭代可视化设计:Data Formulator 提供了“数据线程”功能,用户可以基于现有图表进行进一步操作,AI 会根据自然语言指令更新图表。
  • 结果验证与错误纠正:用户可以查看 AI 生成的转换数据、可视化图表和代码,通过代码解释模块理解数据转换过程。如果发现错误,可以用数据线程的迭代机制进行纠正。
  • 灵活的图表样式调整:用户可以在不进行额外数据转换的情况下,直接在概念编码架上调整图表样式(如颜色方案、轴排序等),即时看到视觉反馈。

Data Formulator 的技术原理

  • 多模态交互界面:Data Formulator 结合了图形化用户界面(GUI)和自然语言输入(NL),用户可以通过拖拽操作或直接输入自然语言指令来定义可视化需求。“双管齐下”的方式让用户能根据自己的习惯选择操作方式,通过界面操作还是语言描述,能高效地传达需求。
  • 概念绑定与数据转换:用户首先通过自然语言或示例定义他们计划可视化的数据概念,然后将这些概念绑定到可视化通道(如 x 轴、y 轴、颜色等)。Data Formulator 会通过其 AI 代理(Agent)自动将输入数据转换为所需的格式,生成所需的可视化。
  • AI 代理与代码生成:Data Formulator 的后端使用 Flask 框架,通过 RESTful API 接收前端请求。当用户点击“Formulate”按钮时,前端会发送一个 POST 请求到后端的 /derive-data 接口。后端根据用户输入的指令和数据,调用 AI 代理(如 DataTransformationAgentV2)生成 Python 代码,执行这些代码以完成数据转换。
  • 数据处理与反馈机制:Data Formulator 提供了数据线程功能,用户可以基于现有图表进行进一步操作,AI 会根据自然语言指令更新图表。Data Formulator 提供了反馈机制,用户可以查看 AI 生成的转换数据、可视化图表和代码,确保结果符合预期。

如何运行 Data Formulator

1. 安装 via Python PIP

使用 Python PIP 进行安装,推荐在虚拟环境中运行:

# 安装 data_formulator
pip install data_formulator

# 启动 data_formulator
data_formulator

# 或者使用以下命令启动
python -m data_formulator

Data Formulator 将自动在浏览器中打开,访问地址为 http://localhost:5000。如果默认端口被占用,可以指定其他端口,例如 python -m data_formulator --port 8080

2. 使用 GitHub Codespaces

你也可以在 GitHub Codespaces 中运行 Data Formulator,所有配置已经预先设置好。点击下方链接即可快速启动:

Open in GitHub Codespaces

3. 开发者模式

如果你希望完全控制开发环境并进行自定义配置,可以参考 DEVELOPMENT.md 文件中的详细说明进行本地构建。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发感兴趣,我会每日分享大模型与 AI 领域的开源项目和应用,提供运行实例和实用教程,帮助你快速上手AI技术!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
17天前
|
存储 人工智能 监控
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
Mahilo 是一个灵活的多智能体框架,支持创建与人类互动的多智能体系统,适用于从客户服务到紧急响应等多种场景。
79 2
Mahilo:多智能体实时协作框架开源!人类与AI无缝交互,复杂任务一键协同
|
27天前
|
机器学习/深度学习 人工智能 搜索推荐
BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
BioEmu 是微软推出的生成式深度学习系统,可在单个 GPU 上每小时生成数千种蛋白质结构样本,支持模拟动态变化、预测热力学性质,并显著降低计算成本。
44 2
BioEmu:微软黑科技炸场!生成式AI重构蛋白质模拟:千倍效率碾压传统计算,新药研发周期砍半
|
14天前
|
人工智能 弹性计算 自然语言处理
5分钟部署,解锁100种和AI大模型的交互可能
在AI技术飞速发展的今天,个人大模型的部署与应用面临复杂流程和高门槛。阿里云推出高效、易用的个人AI大模型部署方案,支持多模型集成、灵活扩展和定制化主页,帮助用户快速搭建专属AI主页,实现智能化新体验,真正把“AI玩出花”。
|
13天前
|
人工智能 弹性计算 自然语言处理
5分钟部署,解锁100种和AI大模型的交互可能
阿里云弹性计算推出了一套高效、易用的个人AI大模型部署方案,帮助用户快速搭建专属的AI主页,开启智能化新体验,真正的实把“AI玩出花”。
|
15天前
|
缓存 人工智能 自然语言处理
微软发明全新LLM语言,AI智能体交互效率翻倍!
微软发布DroidSpeak技术,优化大型语言模型(LLM)间的通信,显著提升AI智能体交互效率。该技术通过嵌入缓存和键值缓存重用,减少预填充延迟,降低高达50%的延迟,同时保持高质量生成。DroidSpeak适用于多种AI任务,提高协作效率,但在资源受限环境和处理模型差异性方面仍面临挑战。
42 3
|
15天前
|
人工智能 数据可视化 前端开发
Probly:开源 AI Excel表格工具,交互式生成数据分析结果与可视化图表
Probly 是一款结合电子表格功能与 Python 数据分析能力的 AI 工具,支持在浏览器中运行 Python 代码,提供交互式电子表格、数据可视化和智能分析建议,适合需要强大数据分析功能又希望操作简便的用户。
208 2
|
21天前
|
人工智能 安全 数据中心
D1net阅闻 | 微软CEO对话特朗普和马斯克:豪掷800亿美元建AI数据中心
D1net阅闻 | 微软CEO对话特朗普和马斯克:豪掷800亿美元建AI数据中心
|
16天前
|
人工智能 人机交互
清华、面壁提出创新AI Agent交互:能主动思考、预测需求
清华大学与面壁智能团队提出了一种创新的AI Agent交互模式,将基于大型语言模型的智能体从被动响应转变为主动协助。通过数据驱动的方法,研究团队开发了能够预测和主动发起任务的智能体,并创建了ProactiveBench数据集。实验结果显示,经过微调的模型在主动性方面取得了66.47%的F1分数,展示了该方法在人机协作中的潜力。论文链接:https://arxiv.org/abs/2410.12361
47 2
|
19天前
|
存储 人工智能 BI
Paimon 1.0: Unified Lake Format for Data + AI
Paimon 1.0: Unified Lake Format for Data + AI
|
21天前
|
人工智能 自然语言处理 前端开发
Flame:开源AI设计图转代码模型!生成React组件,精准还原UI+动态交互效果
Flame 是一款开源的多模态 AI 模型,能够将 UI 设计图转换为高质量的现代前端代码,支持 React 等主流框架,具备动态交互、组件化开发等功能,显著提升前端开发效率。
342 1

热门文章

最新文章