【重磅发布】 免费领取阿里云百炼AI大模型100万Tokens教程出炉,API接口实战操作,DeepSeek-R1满血版即刻体验!

本文涉及的产品
通义法睿合同智能审查,1个月8份合同免费体验
简介: 阿里云百炼是一站式大模型开发及应用构建平台,支持开发者和业务人员轻松设计、构建大模型应用。通过简单操作,用户可在5分钟内开发出大模型应用或在几小时内训练专属模型,专注于创新。

什么是阿里云百炼?

阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。

不论是开发者还是业务人员,都能深入参与大模型应用设计构建

可以通过简单的界面操作,在5分钟内开发出一款大模型应用,或在几小时内训练出一个专属模型,从而将更多精力专注于应用创新!

同时阿里云百炼平台提供了DeepSeek系列的免费服务。

具体来说,所有用户都可以享受DeepSeek-R1、DeepSeek-V3两款模型各100万免费tokens!

此外,类似于DeepSeek-R1-Distill-Qwen-1.5B、deepseek-r1-distill-llama-70b也面向用户限时免费!

这些免费服务旨在让用户能够无门槛地体验DeepSeek系列大模型的强大功能,简直是福利满满啊!

尤其是阿里云百炼平台提供了满血版DeepSeek-R1模型

如图

我们可以在该平台上找到并部署DeepSeek-R1满血版模型,享受其强大的数学、代码、自然语言等推理能力, 还可以找到特定尺寸的DeepSeek-R1蒸馏版模型的限时免费服务。这些服务旨在降低用户的使用门槛,促进AI技术的普及和应用!

更多具体内容大家可以参考阿里云官网文档

https://help.aliyun.com/zh/model-studio/getting-started/what-is-model-studio

如图

阿里云账号注册

如果你还没有阿里云的账号,那你要先去注册一个阿里云的账号吧!

注册完成后才能使用账号登录百炼平台,否则你还怎么玩? 对吧!

阿里云首页官网注册地址

https://www.aliyun.com

这里大家直接用手机邮箱自行注册即可,就不过多赘述了!

注册完成直接登录!

然后在阿里云官网,搜索关键字百炼平台并进入!

如图

如图

开通模型100万免费tokens服务

首先我们点击管理控制台进入到阿里云百炼

登录阿里云百炼大模型服务平台后,如果页面顶部显示如下消息,那么我们需要开通百炼的模型服务,以获得免费额度。

开通百炼不会产生费用,仅调用、部署、调优模型会产生相应费用(超出免费额度后)!

如图

确认开通,领取一下!

如图

获取API Key

API Key是用于访问阿里云百炼平台上的DeepSeek-R1模型等服务的身份验证凭证,它允许我们的应用程序或客户端安全地与平台通信并执行请求的操作!

我们在阿里云百炼平台上鼠标悬停于页面右上角的用户图标,在下拉菜单中单击API-KEY

如图

然后点击创建我的API-KEY

如图

然后点击查看我们就可以获取到API KEY了!

如图

注意

不要将API Key以任何方式公开,避免因未经授权的使用造成安全风险或资金损失。

API Key是我们的重要资产,请务必妥善保管。如果你单击操作列的删除将已有API Key删除,将无法继续通过该Key访问百炼大模型提供的各项服务,如果之前在某些应用程序或服务中集成了这个API Keys,那么这些应用将会因为认证失败而无法正常工作!

安装 OpenAI SDK

那么接下来,我们就可以使用获取到的API Key阿里云百炼平台或相应的客户端中配置账户,以便开始调用DeepSeek-R1模型并消耗的免费tokens

那么这里我们通过SDK调用大模型,所需还需要再本地安装一下OpenAI

阿里云百炼官方提供了PythonJava编程语言的SDK,也提供了与OpenAI兼容的调用方式!

参考文档

https://help.aliyun.com/zh/model-studio/developer-reference/install-sdk

我们需要确保已安装Python3.8或以上版本, 如果你还没有安装Python建议去看看我前面的教程,都有介绍!

我这里安装的为Python 3.10.7

如图

然后开始安装或更新OpenAI,执行以下命令!

pip install -U openai
AI 代码解读

如图

等它安装完成..

将API Key配置到环境变量

然后建议你把API Key配置到环境变量,从而避免在代码里显式地配置API Key,降低泄漏风险!

这里我们以Windows系统为例,我们可以通过系统属性进行配置环境变量,具体步骤如下:

Windows系统桌面中按Win+Q快捷键,在搜索框中搜索编辑系统环境变量关键字,单击打开系统属性界面

如图

系统属性窗口,单击环境变量,然后在系统变量区域下单击新建,变量名填入DASHSCOPE_API_KEY,变量值填入我们的API Key

然后依次单击三个窗口的确定,关闭系统属性配置页面,完成环境变量配置!

把这个DASHSCOPE_API_KEY名字记住了!

最后我们可以测试一下,打开CMD(命令提示符)窗口执行如下命令检查环境变量是否生效

echo %DASHSCOPE_API_KEY%
AI 代码解读

如图

特别注意

我们配置环境变量后不会立即影响已经打开的命令窗口、IDE或其他正在运行的应用程序,所以需要重新启动这些程序或者打开新的命令行使环境变量生效!

快速体验 本地API远程调用DeepSeek-R1满血版大模型

一切都做好了之后,现在我们可以先来体验一下DeepSeek-R1满血大模型了!

大家可以参考官网文档

https://bailian.console.aliyun.com

找到模型广场,然后筛选一下deepseek

如图

然后点击API调用案例进行使用!

这里我们使用Python去进行调用!

https://help.aliyun.com/zh/model-studio/developer-reference/deepseek

把代码复制到自己的编辑器中,这里我使用的是PyCharm

没有安装的朋友可以去jetbrains官网免费去下载一个PyCharm社区版

下载地址:

https://www.jetbrains.com.cn/pycharm/download/?section=windows

如图

安装过程就不过多赘述了,就和平常安装其他软件一样,无脑下一步

实在清楚的,去看看我前面的教程,都有讲解!

安装好之后,打开编辑器,新建一个Python文件,把官网给出的代码粘贴过来!

如图

把代码粘贴到PyCharm

代码如下

import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"), # 如何获取API Key:https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)

completion = client.chat.completions.create(
    model="deepseek-r1",  # 此处以 deepseek-r1 为例,可按需更换模型名称。
    messages=[
        {
   'role': 'user', 'content': '9.9和9.11谁大'}
        ]
)

# 通过reasoning_content字段打印思考过程
print("思考过程:")
print(completion.choices[0].message.reasoning_content)
# 通过content字段打印最终答案
print("最终答案:")
print(completion.choices[0].message.content)
AI 代码解读

如图

这里可能要等待一会..因为官网这里给出了DeepSeek-R1类模型的思考过程可能较长,可能导致响应慢或超时!

最后显示出结果

如图

但是这里官网文档告诉我们响应太慢了,建议我们优先使用流式输出方式调用DeepSeek-R1模型

如图

复制官网给出的案例代码到编辑器执行即可!

代码如下

import os
from openai import OpenAI

client = OpenAI(
    # 若没有配置环境变量,请用百炼API Key将下行替换为:api_key="sk-xxx",
    api_key=os.getenv("DASHSCOPE_API_KEY"),
    base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
completion = client.chat.completions.create(
    model="deepseek-r1", # 此处以 deepseek-r1 为例,可按需更换模型名称。
    messages=[
        {
   'role': 'user', 'content': '9.9和9.11谁大'}
        ],
    stream=True,
    # 解除以下注释会在最后一个chunk返回Token使用量
    # stream_options={
   
    #     "include_usage": True
    # }
    )

# 定义完整思考过程
reasoning_content = ""
# 定义完整回复
answer_content = ""
# 判断是否结束思考过程并开始回复
is_answering = False

print("\n"+"="*20+"思考过程"+"="*20+"\n")
for chunk in completion:
    # include_usage 设置为 True 会使得最后一个chunk返回 Token 使用量,而choices为空列表,此处进行判断
    if chunk.choices == []:
        print("\n"+"="*20+"Token 使用情况"+"="*20+"\n")
        print(chunk.usage)
    # 以下为思考与回复的步骤
    else:
        # include_usage 设置为 True 时,倒数第二个chunk会不包含 reasoning_content 字段,因此需要进行判断
        if hasattr(chunk.choices[0].delta, 'reasoning_content') == False:
            pass
        else:
            # 有时可能会出现思考过程与回复皆为空的情况,此时忽略即可
            if chunk.choices[0].delta.reasoning_content == "" and chunk.choices[0].delta.content == "":
                pass
            else:
                # 如果思考结果为空,则开始打印完整回复
                if chunk.choices[0].delta.reasoning_content == "" and is_answering == False:
                    print("\n"+"="*20+"完整回复"+"="*20+"\n")
                    # 防止打印多个“完整回复”标记
                    is_answering = True
                # 如果思考过程不为空,则打印思考过程
                if chunk.choices[0].delta.reasoning_content != "":
                    print(chunk.choices[0].delta.reasoning_content,end="")
                    reasoning_content += chunk.choices[0].delta.reasoning_content
                # 如果回复不为空,则打印回复。回复一般会在思考过程结束后返回
                elif chunk.choices[0].delta.content != "":
                    print(chunk.choices[0].delta.content,end="")
                    answer_content += chunk.choices[0].delta.content

# 如果您需要打印完整思考过程与完整回复,请将以下代码解除注释后运行
# print("="*20+"完整思考过程"+"="*20+"\n")
# print(f"{reasoning_content}")
# print("="*20+"完整回复"+"="*20+"\n")
# print(f"{answer_content}")
AI 代码解读

如图

那么这就简单的实现了在本地PyCharm开发环境中,通过编程接口API对部署于云端服务的阿里云百炼平台DeepSeek-R1大模型的远程程序化访问与调用!

以上代码中,我们都可以对有免费额度以及限时免费模型名称进行调用

详情参考文档给出的代码案例和模型名称!

如图

这么多福利难道还不够你使用吗!

如图

查看token使用情况

那我们怎么知道现在使用了多少token

例如查看DeepSeek-R1token消耗 我们可以在阿里云百炼平台控制台中,找到与DeepSeek-R1模型相关的token消耗信息!

定期检查token的消耗情况,以确保在免费tokens用完之前能够及时调整或续费!~

如图

最后

阿里云百炼平台震撼发布DeepSeek系列等大模型,并且慷慨赠送百万级免费tokens,满满诚意,点燃自然语言处理领域创新火花,所以大家还不赶紧来领取使用起来~要是错过这波福利你肠子都要悔青~ 信不信~~🥵🥵

目录
打赏
0
89
89
9
247
分享
相关文章
【MCP教程系列】上阿里云百炼,5分钟轻松搭建会分析,能推理,还会自动写文档的Agent
本教程介绍如何在阿里云百炼平台上,用5分钟快速搭建一个能分析、推理并自动写文档的智能体(Agent)。通过零代码方式,结合Flomo MCP应用实现AI分析与自动归档功能。主要步骤包括:开通Flomo服务、获取API KEY、创建智能体并添加MCP服务。完成后,Agent可自动提取关键内容并归档至Flomo。附有详细操作视频和效果演示,新手友好,简单易上手。
【MCP教程系列】上阿里云百炼,5分钟轻松搭建会分析,能推理,还会自动写文档的Agent
【MCP教程系列】上阿里云百炼,5分钟轻松实现查询、分析与可视化一站式解决方案
本文介绍如何在阿里云百炼平台上,通过4个简单步骤实现数据查询、分析与可视化的全流程解决方案。结合博查MCP服务和QuickChart功能,用户无需编程基础,仅需5分钟即可完成配置。
【MCP教程系列】上阿里云百炼,5分钟轻松实现查询、分析与可视化一站式解决方案
Spring AI与DeepSeek实战三:打造企业知识库
本文基于Spring AI与RAG技术结合,通过构建实时知识库增强大语言模型能力,实现企业级智能搜索场景与个性化推荐,攻克LLM知识滞后与生成幻觉两大核心痛点。
230 7
Spring AI与DeepSeek实战四:系统API调用
在AI应用开发中,工具调用是增强大模型能力的核心技术,通过让模型与外部API或工具交互,可实现实时信息检索(如天气查询、新闻获取)、系统操作(如创建任务、发送邮件)等功能;本文结合Spring AI与大模型,演示如何通过Tool Calling实现系统API调用,同时处理多轮对话中的会话记忆。
224 57
【MCP教程系列】如何自己打包MCP服务并部署到阿里云百炼上
本文章以阿里云百炼的工作流为例,介绍如何将其封装为MCP服务并部署到平台。主要步骤包括:1)使用Node.js和TypeScript搭建MCP服务;2)将项目打包并发布至npm官方平台;3)在阿里云百炼平台创建自定义MCP服务;4)将服务添加到智能体中进行测试。通过这些步骤,您可以轻松实现工作流的MCP化,并在智能体中调用自定义服务。
【MCP教程系列】如何自己打包MCP服务并部署到阿里云百炼上
【MCP教程系列】阿里云百炼xChatPPT,5分钟轻松搞定PPT
通过阿里云百炼平台结合ChatPPT,只需简单四步即可快速生成专业PPT。
【MCP教程系列】阿里云百炼xChatPPT,5分钟轻松搞定PPT
【MCP教程系列】在阿里云百炼,实现超级简单的MCP服务部署
阿里云百炼推出业界首个全生命周期MCP服务,支持一键在线注册托管。企业可将自研或外部MCP服务部署于阿里云百炼平台,借助FC函数计算能力,免去资源购买与服务部署的复杂流程,快速实现开发。创建MCP服务仅需四步,平台提供预置服务与自定义部署选项,如通过npx安装代码配置Flomo等服务。还可直接在控制台开通预置服务,体验高效便捷的企业级解决方案。
【MCP教程系列】在阿里云百炼,实现超级简单的MCP服务部署
一个支持阿里云百炼平台DeepSeek R1大模型(智能体)的Wordpress插件,AI Agent or Chatbot.
这是一个将阿里云DeepSeek AI服务集成到WordPress的聊天机器人插件,支持多轮对话、上下文记忆和自定义界面等功能。用户可通过短代码轻松添加到页面,并支持多种配置选项以满足不同需求。项目采用MIT协议授权,代码仓位于GitHub与Gitee。开发者Chi Leung为长期境外工作,代码注释以英文为主。适合需要在WordPress网站中快速部署AI助手的用户使用。
【MCP教程系列】当阿里云百炼智能体携带MCP,超级GitHub运营即刻上岗
阿里云百炼提供了一系列预置的MCP服务,无需自行部署或支付资源费用。通过简单几步,即可在智能体中添加MCP服务,自动实现调用兼容。
长文详解|DataWorks Data+AI一体化开发实战图谱
DataWorks是一站式智能大数据开发治理平台,内置阿里巴巴15年大数据建设方法论,深度适配阿里云MaxCompute、EMR、Hologres、Flink、PAI 等数十种大数据和AI计算服务,为数仓、数据湖、OpenLake湖仓一体数据架构提供智能化ETL开发、数据分析与主动式数据资产治理服务,助力“Data+AI”全生命周期的数据管理。

相关产品

  • 大模型服务平台百炼