Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户

简介: Python决策树、随机森林、朴素贝叶斯、KNN(K-最近邻居)分类分析银行拉新活动挖掘潜在贷款客户

项目背景:银行的主要盈利业务靠的是贷款,这些客户中的大多数是存款大小不等的责任客户(存款人)。银行拥有不断增长的客户。该银行希望增加借款人(资产客户),开展更多的贷款业务,并通过贷款利息赚取更多利润。因此,银行希望将负债的客户转换为个人贷款客户。(同时保留他们作为存款人)。该银行去年针对负债客户开展的一项活动显示,成功实现了9%以上的成功转化率。该部门希望建立一个模型,来帮助他们确定购买贷款可能性更高的潜在客户。可以增加成功率,同时降低成本。

数据集

下面给出的文件包含5000个客户的数据。数据包括客户人口统计信息(年龄,收入等),客户与银行的关系(抵押,证券账户等)以及客户对上次个人贷款活动的因变量(个人贷款)。在这5000个客户中,只有480个(= 9.6%)接受了先前活动中提供给他们的个人贷款

data.head()

data.columns

属性信息

属性可以相应地划分:

  • 变量 ID 一个人的客户ID与贷款之间没有关联,也无法为将来的潜在贷款客户提供任何一般性结论。我们可以忽略此信息进行模型预测。

二进制类别具有五个变量,如下所示:

  • 个人贷款-该客户是否接受上一个广告系列提供的个人贷款? 这是我们的目标变量
  • 证券帐户-客户在银行是否有证券帐户?
  • CD帐户-客户在银行是否有存款证明(CD)帐户?
  • 网上银行-客户是否使用网上银行?
  • 信用卡-客户是否使用银行发行的信用卡?

数值变量如下:

  • 年龄-客户的年龄
  • 工作经验
  • 收入-年收入(元)
  • CCAvg-平均信用卡消费
  • 抵押-房屋抵押价值

有序分类变量是:

  • 家庭-客户的家庭人数
  • 教育程度-客户的教育程度

标称变量是:

  • ID
  • 邮政编码

data.shape

data.info()

# 文件中没有列有空数据

data.apply(lambda x : sum(x.isnull()))

# 对数据进行目测

data.describe().transpose()

#查看有多少不同数据

data.apply(lambda x: len(x.unique()))

两两变量散点图

  • 年龄 特征通常是分布的,大多数客户年龄在30岁到60岁之间。
  • 经验 大多分布在8年以上经验的客户。这里的 平均值 等于中 位数。有负数 。这可能是数据输入错误,因为通常无法衡量负数的工作经验。我们可以删除这些值,因为样本中有3或4条记录。
  • 收入出现 正偏斜。大多数客户的收入在45,000到55K之间。我们可以通过说平均值 大于 中位数来确认这一点
  • CCAvg 也是一个正偏变量,平均支出在0K到10K之间,大多数支出不到2.5K
  • 抵押 70%的人的抵押贷款少于4万。但是最大值为635K
  • 家庭和教育变量是序数变量。家庭分布均匀

有52条记录经验为负数。在进一步进行之前,我们需要对这些记录进行清理

data\[data\['Experience'\] < 0\]\['Experience'\].count()

52

#清理负数变量

dfExp = data.loc\[data\['Experience'\] >0\]

data.loc\[negExp\]\['ID'\].tolist() # 得到有负数经验的客户ID

有52条负数经验的记录

以下代码执行以下步骤:

  • 对于具有ID的记录,获取Age column的值
  • 对于具有ID的记录,获取Education column的值
  • 从具有正数经验的记录的数据框中过滤符合以上条件的记录,并取中位数
  • 将中位数填充原本负数经验的位置

data.loc\[np.where(\['ID'\]==id)\]\["Education"\].tolist()\[0\]

df_filtered\['Experience'\].median()

# 检查是否有负数经验的记录

data\[data\['Experience'\] < 0\]\['Experience'\].count()

0

收入和教育对个人贷款的影响

boxplot(x='Education',y='Income',data=data)

观察 :看来教育程度为1的客户收入更高。但是,接受了个人贷款的客户的收入水平相同

推论 :从上图可以看出,没有个人贷款的客户和拥有个人贷款的客户的抵押贷款较高。

观察 :大多数没有贷款的客户都有证券账户

观察:家庭人数对个人贷款没有任何影响。但是似乎3岁的家庭更有可能借贷。考虑未来的推广活动时,这可能是一个很好的观察结果。

观察:没有CD帐户的客户,也没有贷款。这似乎占多数。但是几乎所有拥有CD帐户的客户也都有贷款

观察:该图显示有个人贷款的人的信用卡平均费用更高。平均信用卡消费中位数为3800元,表明个人贷款的可能性更高。较低的信用卡支出(中位数为1400元)不太可能获得贷款。这可能是有用的信息。

观察 上图显示与经验和年龄呈正相关。随着经验的增加,年龄也会增加。颜色也显示教育程度。四十多岁之间存在差距,大学以下的人也更多

# 与热图的关联性


corr = data.corr()

plt.figure(figsize=(13,7))

# 创建一个掩码,以便我们只看到一次相关的值


a = sns.heatmap(corr,mask=mask, annot=True, fmt='.2f')

观察

  • 收入和CCAvg呈中等相关。
  • 年龄和工作经验高度相关

sns.boxplot

看下面的图,收入低于10万的家庭比高收入的家庭更不可能获得贷款。

应用模型

将数据分为训练集和测试集

train\_labels = train\_set
test\_labels = test\_set

决策树分类器

DecisionTreeClassifier(class_weight=None, criterion='entropy', ...)
dt_model.score
0.9773333333333334
dt\_model.predict(test\_set)

预测

array(\[0, 0, 0, 0, 0\])

查看测试集

test_set.head(5)

朴素贝叶斯

naive\_model.fit(train\_set, train_labels)
naive_
model.score

0.8866666666666667

随机森林分类器

RandomForestClassifier(max\_depth=2, random\_state=0)

Importance.sort_values

randomforest\_model.score(test\_set,test_labels)

0.8993333333333333

KNN(K-最近邻居)

data.drop(\['Experience' ,'ID'\] , axis = 1).drop(labels= "PersonalLoan" , axis = 1)
train\_set\_dep = data\["PersonalLoan"\]
acc = accuracy\_score(Y\_Test, predicted)
print(acc)
0.9106070713809206

模型比较

for name, model in models:
    kfold = model\_selection.KFold(n\_splits=10)
    cv\_results = model\_selection.cross\_val\_score(model, X, y, cv, scoring)



# 箱线图算法的比较

plt.figure()

结论

通用银行的目的是将负债客户转变为贷款客户。他们想发起新的营销活动;因此,他们需要有关数据中给出的变量之间的有联系的信息。本研究使用了四种分类算法。从上图可以看出,随机森林 算法似乎 具有最高的精度,我们可以选择它作为最终模型。


相关文章
|
2月前
|
JavaScript 前端开发 Android开发
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
99 13
【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
|
6天前
|
算法 Java Python
使用Python来绘制樱花树
本文以林徽因的《你是人间的四月天》为引,将春日意象与现代职场编程艺术结合,通过Python的Turtle模块绘制分形树和花瓣图案。文章详细解析了Turtle模块的使用方法、递归算法及随机性在图形生成中的应用,展示了如何用代码创造自然美感。核心代码包含tree函数(绘制分形树)和petal函数(绘制花瓣),最终生成一幅生动的春日画卷。项目不仅帮助读者掌握Turtle绘图技巧,更激发对编程艺术的兴趣,鼓励探索数字世界的无限可能。
46 5
|
2月前
|
JavaScript 搜索推荐 Android开发
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
83 8
【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
|
5月前
|
数据采集 数据可视化 数据挖掘
掌握Python数据分析,解锁数据驱动的决策能力
掌握Python数据分析,解锁数据驱动的决策能力
|
6月前
|
机器学习/深度学习 数据采集 自然语言处理
使用Python实现深度学习模型:智能客户服务与支持
使用Python实现深度学习模型:智能客户服务与支持
75 6
|
7月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
116 2
|
7月前
|
存储 开发者 Python
从理论到实践:Python中Trie树与Suffix Tree的完美结合,开启编程新篇章!
在编程领域,高效的数据结构对于解决问题至关重要。本文通过一个案例分析,介绍如何在Python中结合使用Trie树(前缀树)和Suffix Tree(后缀树)。案例聚焦于开发具备高效拼写检查和文本相似度检测功能的文本编辑器。首先,通过构建Trie树快速检查单词是否存在;接着,利用Suffix Tree检测文本相似度。尽管Python标准库未直接提供Suffix Tree,但可通过第三方库或自定义实现。本文展示了高级数据结构在实际应用中的强大功能,并强调了理论与实践相结合的重要性。
88 1
|
7月前
|
存储 算法 Python
逆袭之路:掌握Python字典树Trie与后缀树,成为技术圈的耀眼新星!
在编程的征途上,每个人都渴望成为那个能够独当一面、解决复杂问题的技术高手。而掌握高级数据结构,如字典树(Trie)与后缀树(Suffix Tree),无疑是你逆袭路上的重要一步。这些数据结构不仅能够提升你的编码技能,还能让你在解决特定问题时游刃有余,从而在技术圈中脱颖而出,成为那颗耀眼的新星。
69 1
|
机器学习/深度学习 数据可视化 测试技术
实战:用Python实现随机森林
随机森林如何实现?为什么要用随机森林?看这篇足够了!
4471 0
|
1月前
|
机器学习/深度学习 存储 设计模式
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。

热门文章

最新文章