共享单车需求量数据用CART决策树、随机森林以及XGBOOST算法登记分类及影响因素分析

简介: 共享单车需求量数据用CART决策树、随机森林以及XGBOOST算法登记分类及影响因素分析

全文链接:http://tecdat.cn/?p=28519

作者:Yiyi Hu


近年来,共享经济成为社会服务业内的一股重要力量。作为共享经济的一个代表性行业,共享单车快速发展,成为继地铁、公交之后的第三大公共出行方式


但与此同时,它也面临着市场需求不平衡、车辆乱停乱放、车辆检修调度等问题。本项目则着眼于如何不影响市民出行效率的同时,对共享单车进行合理的批量维修工作的问题,利用CART决策树、随机森林以及Xgboost算法对共享单车借用数量进行等级分类,试图通过模型探究其影响因素并分析在何种条件下对共享单车进行批量维修为最优方案。


解决方案


任务/目标

通过机器学习分类模型探究共享单车借用数量的影响因素,并分析在何种条件下对共享单车进行批量维修为最优方案。

数据源准备

该数据集有三个数据来源,分别为交通局,天气数据,以及法定假期。


解决方案


任务/目标

通过机器学习分类模型探究共享单车借用数量的影响因素,并分析在何种条件下对共享单车进行批量维修为最优方案。


数据预处理及可视化

(一)时间:首先从“timestamp”列中提取了“month”和“hour”两列,试图分别从整体、季度、月份、小时四个方面,对共享单车借用总数进行箱图分析。


(二)天气:观察数据特征发现,其中“weather_code”列各类别分别为:1 =晴朗;大致清晰,但有一些值与雾霾/雾/雾斑/雾附近;2 =散云/一些云;3 =碎云/云层疏松;4 =多云;7 =雨/小雨阵雨/小雨;10 =雨与雷暴;26 =降雪;94 =冻雾。因此,本文对“weather_code”进行重新定义,将 1,2,3,4 类天气现象定义为宜骑车天气;7,10,26,94 类天气现象定义为不宜骑车天气。

(三)共享单车借用数量:“节假日”与“双休日”中共享单车使用数量的分布较为相似,高峰期均在午后。对比发现,“工作日”中单车使用数量的高峰期在 7 点至 9 点,16 点到 19 点这两个时间段呈现为两个明显的波峰,这两个时间段往往是上班下班时间,人流量比较大,因而数据的呈现比较符合实际的规律。因此,绝对将“is_holiday”列与“is_weekend”列联合进行分组,合并为“is\_non\_workday”,分为工作组与非工作日组。


(四)温度:图 5-4 为各变量之间的相关系数矩阵,发现温度“t1”列与体感温度“t2”列之间存在较高的相关性,且天气温度数据更加客观,因此选择仅保留“t1”列。各个变量之间的均呈现中弱相关性。此外,各变量与因变量“count_log”列均存在一定的相关性,但相关强度不一。


(五)经观察“count_log”箱图发现,该数据仍存在着少量异常值。因此,为了提高结果的准确性,选择删去 16 个过低的数值,剩余 17398 组数据。

在进行预处理后,本文已经对共享单车中的变量进行了筛选与调整,保留了 hour,t1,is\_non\_workday,weather_code,wind_speed,hum,season 等 7 个特征变量。在正 式建立模型之前,对于因变量“count_log”进行等频分箱,将其分成了五类,命名为 category。当保证类别平衡,即每类数据的样本量接近,算法会有更好的效果。对于温度、湿度等连续性变量,为使得最后结果的准确性,并未对其进行分箱。

接下来,本文对所有的特征变量进行了归一化处理,为了归纳统一样本的统计分布性, 本文选取 75%的数据划分为训练集,25%的数据作为测试集。


建模


CART决策树:

CART 算法易于理解和实现,人们在通过解释后都有能力去理解决策树所表达的意义。并且能够同时处理分类型与数值型属性且对缺失值不敏感。


随机森林:

使用随机森林模型在进行分类时,需要现在经过训练的决策树中输入测试样本,这棵决策树的分类便可以由各叶子节点的输出结果而确定;再根据所有决策树的分类结果,从而求得随机森林对测试样本的最终评价结果。

使用自助法随机地抽样得到决策树的输入样本和选取最佳的分割标准在决策树的节点上随机地选取特征进行分割是随机森林的两大优点,正是这些优势使得随机森林具备了良好的容忍噪声的能力,且使得决策树之间的相关性有所降低。随机森林中的决策树还具备了任意生长但不被修剪的特点,因此这些决策树的偏差较低,有利于提高评价的准确度。


Xgboost:

Xgboost 作为一种新型的集成学习方法,优点颇多。首先,他在代价函数里加入了正则化项,用于控制模型的复杂度,有效防止了过拟合。其次,Xgboost 支持并行处理,众所周知,决策树的学习最耗时的一个步骤是对特征的值进行排序,Xgboost 在训练之前预先对数据进行了排序,然后保存为 block 结构,后面的迭代中重复使用这个结构,大大减小了计算量。再次,Xgboost 算法灵活性高,它支持用户自定义目标函数和评估函数,只要保证目标函数二阶可导即可,并且对于特征值有缺失的样本,可以自动学习出它的分裂方向。最后,Xgboost 先从顶到底建立所有可以建立的子树,再从底到顶反向进行剪枝,这样不容易陷入局部最优解。

本文分别利用 CART 决策树、随机森林以及 Xgboost 算法对共享单车借用数量进行等级分类,并对三个方法进行精度测试,发现通过 Xgboost 算法分类效果最好,经过调参后,训练集模型精确度高达 0.92,测试集精确度为 0.83。分析分类结果以及各因素的重要性发现,时间、风速、湿度、温度四个因素对共享单车使用量存在较高的影响,因此维修部门可以选在凌晨阶段,或者风速较大、温度过低或过高的时期对共享单车进行合理的批量维修,避开市民用车高峰,保证市民出行效率以及用车安全。

关于作者

在此对Yiyi Hu对本文所作的贡献表示诚挚感谢,她专长时间序列预测、回归分析、多元统计、数据清洗、处理及可视化、基础机器学习模型以及集成模型。

相关文章
|
1天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
14 6
|
2天前
|
算法 数据可视化 Python
Python中的决策树算法探索
Python中的决策树算法探索
|
3天前
|
机器学习/深度学习 算法 Python
机器学习算法的比较与选择是在实际应用中非常重要的一步,不同的算法适用于不同的问题和数据特征。
机器学习算法的比较与选择是在实际应用中非常重要的一步,不同的算法适用于不同的问题和数据特征。
|
7天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为"Ttttttt111222",优化后为"Tttttttt333444",明显改进体现为"Tttttttttt5555"。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用'adam'优化器和超参数调整,最终评估并保存预测结果。
15 0
|
7天前
|
机器学习/深度学习 数据采集 算法
机器学习入门:算法与数据的探索之旅
【6月更文挑战第13天】本文介绍了机器学习的基础,包括算法和数据处理的重要性。机器学习算法分为监督学习(如线性回归、决策树)、非监督学习(如聚类、降维)和强化学习。数据处理涉及数据清洗、特征工程、数据分割及标准化,是保证模型性能的关键。对于初学者,建议学习基础数学、动手实践、阅读经典资料和参与在线课程与社区讨论。
|
1天前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
1天前
|
机器学习/深度学习 算法 计算机视觉
基于ADAS的车道线检测算法matlab仿真
**摘要:** 基于ADAS的车道线检测算法利用Hough变换和边缘检测在视频中识别车道线,判断车道弯曲情况,提供行驶方向信息,并高亮显示。在MATLAB2022a中实现,系统包括图像预处理(灰度化、滤波、边缘检测)、车道线特征提取(霍夫变换、曲线拟合)和车道线跟踪,确保在实时场景中的准确性和稳定性。预处理通过灰度转换减少光照影响,滤波去除噪声,Canny算法检测边缘。霍夫变换用于直线检测,曲线拟合适应弯道,跟踪则增强连续帧的车道线检测。
|
6天前
|
算法 JavaScript 决策智能
基于禁忌搜索算法的TSP路径规划matlab仿真
**摘要:** 使用禁忌搜索算法解决旅行商问题(TSP),在MATLAB2022a中实现路径规划,显示优化曲线与路线图。TSP寻找最短城市访问路径,算法通过避免局部最优,利用禁忌列表不断调整顺序。关键步骤包括初始路径选择、邻域搜索、解评估、选择及禁忌列表更新。过程示意图展示搜索效果。
|
6天前
|
机器学习/深度学习 算法
基于BP神经网络和小波变换特征提取的烟草香型分类算法matlab仿真,分为浓香型,清香型和中间香型
```markdown 探索烟草香型分类:使用Matlab2022a中的BP神经网络结合小波变换。小波分析揭示香气成分的局部特征,降低维度,PCA等用于特征选择。BP网络随后处理这些特征,以区分浓香、清香和中间香型。 ```
|
8天前
|
算法 安全
基于龙格库塔算法的SIR病毒扩散预测matlab仿真
该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。

热门文章

最新文章