用自然语言指导强化学习agent打游戏,这是斯坦福的最新研究

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介:
本文来自AI新媒体量子位(QbitAI)

斯坦福大学计算机科学系的三位学者,在近日发表的论文中,介绍了一个打Atari游戏的深度强化学习agent,不同之处是,这个agent听从自然语言的指导。

人类的学习,不是处在真空隔离、毫无互动的状态中,相反我们生活在一个复杂的因果世界。在人类的学习中,会得到来自他人的自然语言指导。

基于上述想法,斯坦福的三位学者想要探索能够接受自然语言指令的人工智能agent,而他们选择的试验场景还是Atari游戏世界。


整个过程分为两个阶段。

第一阶段,agent学习英语指令的意义,以及在游戏中的映射关系。第二阶段,agent基于已经学会理解的指令开始探索环境,并且学习需要什么操作来满足给定的指令。

这篇论文表示,他们训练出来的agent,表现优于Deep-Q Networks(DQN)和A3C训练出来的agent,也超过OpenAI Gym上的最佳agent。

他们所使用的游戏,是Atari 2600中难度很高的一款:蒙特祖玛的复仇。

所有详细的内容,请直接查看斯坦福论文。获取论文地址,请在量子位微信公众号(ID:QbitAI)对话界面,回复:“复仇”两个字即可。

本文作者:问耕 
原文发布时间: 2017-04-04 
目录
打赏
0
0
0
0
16427
分享
相关文章
北大领衔,多智能体强化学习研究登上Nature子刊
北京大学研究团队近日在《Nature》子刊上发布了一篇关于多智能体强化学习(MARL)的论文,提出了一种高效且可扩展的MARL框架,旨在解决大规模网络控制系统中的决策问题。该框架实现了智能体间的局部通信,减少了通信成本与计算复杂度,并在交通、电力及疫情防控等多个真实场景实验中,显著提升了决策性能。论文链接:https://www.nature.com/articles/s42256-024-00879-7。尽管该研究仍存局限,但为MARL的应用提供了新思路。
103 2
清华EconAgent获ACL 2024杰出论文:大模型智能体革新计算经济学研究范式
近年来,人工智能的迅猛发展推动了数据驱动建模在宏观经济学领域的应用。清华大学研究团队提出的EconAgent模型,基于大型语言模型,具备类似人类的决策能力,能更准确地模拟个体行为对宏观经济系统的影响。EconAgent在个体异质性、市场动态及宏观经济因素模拟方面表现出色,并具有更好的可解释性和灵活性。然而,其高计算复杂度和部分决策过程的不透明性仍需进一步解决。该成果已在ACL 2024会议上获得杰出论文奖。论文链接:https://arxiv.org/abs/2310.10436v4
128 3
基于agentscope的多智能体游戏场景-骗子酒馆
骗子酒馆是一款基于多智能体系统的在线社交推理游戏,玩家通过掷骰子和扑克牌进行智力和心理博弈,结合大语言模型技术,每个游戏角色由AI扮演,具备独特的性格和决策逻辑,提供高度沉浸式的体验。游戏采用黑板通信模式,确保信息高效交换,支持多种角色如胆小鬼、占卜师等,每个角色拥有特定的技能和行为模式,增强游戏的策略深度和互动性。游戏界面简洁,操作流畅,适合喜欢心理战和策略游戏的玩家。文章末尾有源码和体验地址。
163 13
ACL 2024:PsySafe:跨学科视角下的Agent系统安全性研究
【6月更文挑战第21天】PsySafe是一个创新框架,关注多智能体系统集成大型语言模型后的安全风险。它从心理学角度评估和强化系统安全,通过模拟攻击检测漏洞,并设计防御策略。研究显示智能体的负面心理状态影响其行为安全,揭示了心理状态与行为模式的关联。该框架为MAS安全性研究提供新途径,但也面临智能体心理评估准确性和行为评估方法的挑战。[arxiv.org/pdf/2401.11880
](https://arxiv.org/pdf/2401.11880)
108 6
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库: ```bash pip install gym torch ``` 接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。
337 4
手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣
端到端优化所有能力,字节跳动提出强化学习LLM Agent框架AGILE
【10月更文挑战第23天】字节跳动研究团队提出AGILE框架,通过强化学习优化大型语言模型(LLM)在复杂对话任务中的表现。该框架将LLM作为核心决策模块,结合记忆、工具和专家咨询模块,实现智能体的自我进化。实验结果显示,AGILE智能体在ProductQA和MedMCQA数据集上优于GPT-4。
174 4
[大语言模型-论文精读] 以《黑神话:悟空》为研究案例探讨VLMs能否玩动作角色扮演游戏?
[大语言模型-论文精读] 以《黑神话:悟空》为研究案例探讨VLMs能否玩动作角色扮演游戏?
82 0
北大领衔,多智能体强化学习研究登上Nature子刊
【10月更文挑战第1天】近日,北京大学领导的研究团队在《Nature》子刊上发表了一篇关于多智能体强化学习的论文,提出了一种高效且可扩展的框架,解决了大规模网络控制系统中的决策问题。该框架通过局部通信避免了集中式和独立学习的缺点,在交通、电力等领域的实验中展现了卓越性能。然而,其在更复杂系统中的效果及计算复杂度仍需进一步验证。论文链接:https://www.nature.com/articles/s42256-024-00879-7。
62 3
强化学习Agent系列(一)——PyGame游戏编程,Python 贪吃蛇制作实战教学
本文是关于使用Pygame库开发Python贪吃蛇游戏的实战教学,介绍了Pygame的基本使用、窗口初始化、事件处理、键盘控制移动、以及实现游戏逻辑和对象交互的方法。
PyTorch 在自然语言处理中的应用案例研究
【8月更文第27天】PyTorch 是一个强大的开源机器学习框架,它为开发者提供了构建和训练深度学习模型的能力。在自然语言处理(NLP)领域,PyTorch 提供了一系列工具和库,使开发者能够快速地实现和测试新的想法。本文将介绍如何使用 PyTorch 来解决常见的 NLP 问题,包括文本分类和机器翻译,并提供具体的代码示例。
69 2

量子位

+ 订阅

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等