手把手教你从零开始构建并训练你的第一个强化学习智能体:深入浅出Agent项目实战,带你体验编程与AI结合的乐趣

简介: 【10月更文挑战第1天】本文通过构建一个简单的强化学习环境,演示了如何创建和训练智能体以完成特定任务。我们使用Python、OpenAI Gym和PyTorch搭建了一个基础的智能体,使其学会在CartPole-v1环境中保持杆子不倒。文中详细介绍了环境设置、神经网络构建及训练过程。此实战案例有助于理解智能体的工作原理及基本训练方法,为更复杂应用奠定基础。首先需安装必要库:```bashpip install gym torch```接着定义环境并与之交互,实现智能体的训练。通过多个回合的试错学习,智能体逐步优化其策略。这一过程虽从基础做起,但为后续研究提供了良好起点。

Agent智能体项目实战
image.png

当谈到智能体(agent)时,我们通常指的是在一个环境中能够感知并采取行动的实体。在人工智能领域,智能体可以是模拟环境中的机器人、游戏中的非玩家角色(NPC),甚至是复杂的软件系统的一部分。本篇将通过构建一个简单的强化学习环境来演示如何创建和训练一个智能体,使其学会在特定环境中执行特定任务。我们将使用Python编程语言,并利用OpenAI Gym库来创建环境,使用PyTorch进行深度学习模型的开发。

首先,我们需要安装必要的库:

pip install gym torch

接下来,定义我们的环境。这里我们选择一个简单的环境——CartPole-v1,它是一个经典的控制问题,智能体需要学会如何通过左右移动一个推车来保持直立的杆子不倒下。

import gym

env = gym.make('CartPole-v1')
env.reset()

然后,我们定义一个简单的神经网络作为智能体的大脑,它接收来自环境的状态,并输出动作。在这个例子中,我们将使用一个单层的全连接网络。

import torch
import torch.nn as nn
import torch.optim as optim

class SimplePolicy(nn.Module):
    def __init__(self):
        super(SimplePolicy, self).__init__()
        self.fc1 = nn.Linear(env.observation_space.shape[0], 128)
        self.fc2 = nn.Linear(128, env.action_space.n)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

policy = SimplePolicy()
optimizer = optim.Adam(policy.parameters(), lr=0.01)

现在,我们编写训练循环。在这个循环中,智能体会与环境互动,尝试通过试错来学习策略。我们将记录每次尝试的结果,并使用这些结果来更新智能体的策略。

def train_episode(policy, optimizer, env):
    state = env.reset()
    done = False
    while not done:
        # 使用智能体选择动作
        action_probs = policy(torch.FloatTensor(state))
        action = torch.argmax(action_probs).item()

        # 执行动作并观察结果
        next_state, reward, done, _ = env.step(action)

        # 更新状态
        state = next_state

        # 训练模型
        loss = -torch.log(action_probs[action])
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

    return reward

# 进行多个回合的训练
num_episodes = 1000
for episode in range(num_episodes):
    reward = train_episode(policy, optimizer, env)
    if episode % 100 == 0:
        print(f"Episode {episode}: Reward = {reward}")

以上就是构建和训练一个简单智能体的全过程。在这个过程中,我们从零开始搭建了一个强化学习环境,并且训练了一个能够执行特定任务的智能体。值得注意的是,这里的智能体非常基础,仅作为一个起点。在更复杂的应用场景中,可能需要更高级的算法和技术来改进智能体的表现,例如使用更复杂的神经网络架构、更精细的训练策略等。

通过这样的实战练习,我们可以更好地理解智能体是如何工作的,以及如何设计和训练它们来完成指定任务。对于进一步的研究和开发,这个基础可以作为一个良好的起点。

相关文章
|
2月前
|
数据采集 存储 人工智能
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
本文深度聚焦 AI 模型训练效率优化,全面涵盖数据预处理(清洗、归一化、增强)、模型架构(轻量级应用、剪枝与量化)、训练算法与超参数调优(自适应学习率、优化算法)等核心维度。结合自动驾驶、动物图像识别、语音识别等多领域实际案例,佐以丰富且详细的代码示例,深度剖析技术原理与应用技巧,为 AI 从业者呈上极具专业性、可操作性与参考价值的技术宝典,助力高效优化模型训练效率与性能提升。
智创 AI 新视界 -- 优化 AI 模型训练效率的策略与技巧(16 - 1)
|
2月前
|
人工智能 监控 JavaScript
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
MCP服务器通过提供资源、工具、提示模板三大能力,推动AI实现多轮交互与实体操作。当前生态包含Manus、OpenManus等项目,阿里等企业积极合作,Cursor等工具已集成MCP市场。本文以贪吃蛇游戏为例,演示MCP Server实现流程:客户端连接服务端获取能力集,AI调用工具(如start_game、get_state)控制游戏,通过多轮交互实现动态操作,展示MCP在本地实践中的核心机制与挑战。
444 39
MCP实战之Agent自主决策-让 AI玩转贪吃蛇
|
2月前
|
存储 人工智能 自然语言处理
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
本文探讨了多智能体系统中记忆机制的设计与实现,提出构建精细化记忆体系以模拟人类认知过程。文章分析了上下文窗口限制的技术挑战,并介绍了四种记忆类型:即时工作记忆、情节记忆、程序性记忆和语义知识系统。通过基于文件的工作上下文记忆、模型上下文协议的数据库集成以及RAG系统等技术方案,满足不同记忆需求。此外,高级技术如动态示例选择、记忆蒸馏和冲突解决机制进一步提升系统智能化水平。总结指出,这些技术推动智能体向更接近人类认知的复杂记忆处理机制发展,为人工智能开辟新路径。
179 5
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
|
1月前
|
人工智能 分布式计算 大数据
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
139 2
|
1月前
|
人工智能 前端开发 搜索推荐
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
本文介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整流程。从简单的ReAct智能体开始,逐步扩展至包含身份验证、人工干预、长期内存管理和性能评估的复杂架构。文章详细讲解了状态管理、工具集成、条件流程控制等关键技术,并对比了监督者架构与群体架构的优劣。通过系统化的方法,展示了如何构建可靠、可扩展的AI系统,为现代AI应用开发提供了坚实基础。*作者:Fareed Khan*
117 0
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
|
2月前
|
人工智能 运维 安全
阿里云 Serverless 助力海牙湾构建弹性、高效、智能的 AI 数字化平台
海牙湾(G-Town)是一家以“供应链+场景+技术+AI”为核心驱动力的科技公司,致力于为各行业提供数字化转型解决方案。通过采用阿里云Serverless架构,解决了弹性能力不足、资源浪费与运维低效的问题。SAE全托管特性降低了技术复杂度,并计划进一步探索Serverless与AI结合,推动智能数字化发展。海牙湾业务覆盖金融、美妆、能源等领域,与多家知名企业建立战略合作,持续优化用户体验和供应链决策能力,保障信息安全并创造可量化的商业价值。未来,公司将深化云原生技术应用,助力更多行业实现高效数字化转型。
228 19
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
当无人机遇上Agentic AI:新的应用场景及挑战
本文简介了Agentic AI与AI Agents的不同、Agentic无人机的概念、应用场景、以及所面临的挑战
107 5
当无人机遇上Agentic AI:新的应用场景及挑战
|
2月前
|
开发框架 人工智能 Java
破茧成蝶:阿里云应用服务器让传统 J2EE 应用无缝升级 AI 原生时代
本文详细介绍了阿里云应用服务器如何助力传统J2EE应用实现智能化升级。文章分为三部分:第一部分阐述了传统J2EE应用在智能化转型中的痛点,如协议鸿沟、资源冲突和观测失明;第二部分展示了阿里云应用服务器的解决方案,包括兼容传统EJB容器与微服务架构、支持大模型即插即用及全景可观测性;第三部分则通过具体步骤说明如何基于EDAS开启J2EE应用的智能化进程,确保十年代码无需重写,轻松实现智能化跃迁。
294 40

热门文章

最新文章