开发者社区> being_young123> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

如何在ROS中使用PCL(2)

简介: 记录关于我们运行roslaunch openni_launch openni.launch  命令时生成的话题以及这些话题的数据类型便于后期的处理,只有知道它们的数据结构,才能很好的对数据进行处理,我们观察到使用rostopic list的所有话题的列表,当然其中也有一些不经常使用的话题类型,比如下...
+关注继续查看

记录关于我们运行roslaunch openni_launch openni.launch  命令时生成的话题以及这些话题的数据类型便于后期的处理,只有知道它们的数据结构,才能很好的对数据进行处理,我们观察到使用rostopic list的所有话题的列表,当然其中也有一些不经常使用的话题类型,比如下面这些话题是我们经常使用的
/camera/depth/image
/camera/depth/image_raw
/camera/depth/points
/camera/ir/image_raw
/camera/rgb/image_color
/camera/rgb/image_raw

发布的话题:

image_raw (sensor_msgs/Image) : 未处理的原始图像

使用命令查看sensor_msgs/Image的数据

camera_info (sensor_msgs/CameraInfo):包含了相机标定配置以及相关数据

 

介绍几个ROS节点运行的几种工具。他们的作用是ROS格式点云或包与点云数据(PCD)文件格式之间的相互转换。

(1)bag_to_pcd

用法:rosrun pcl_ros bag_to_pcd <input_file.bag> <topic> <output_directory>

读取一个包文件,保存所有ROS点云消息在指定的PCD文件中。

(2)convert_pcd_to_image

用法:rosrun pcl_ros convert_pcd_to_image <cloud.pcd>

加载一个PCD文件,将其作为ROS图像消息每秒中发布五次。

(3) convert_pointcloud_to_image

用法:rosrun pcl_ros convert_pointcloud_to_image input:=/my_cloud output:=/my_image

 查看图像:rosrun image_view image_view image:=/my_image

订阅一个ROS的点云的话题并以图像的信息发布出去。
(4)pcd_to_pointcloud

用法:rosrun pcl_ros pcd_to_pointcloud <file.pcd> [ <interval> ]

  • <file.pcd> is the (required) file name to read.

  • <interval> is the (optional) number of seconds to sleep between messages. If <interval> is zero or not specified the message is published once.

加载一个PCD文件,发布一次或多次作为ROS点云消息
(5)pointcloud_to_pcd

例如: rosrun pcl_ros pointcloud_to_pcd input:=/velodyne/pointcloud2

订阅一个ROS的话题和保存为点云PCD文件。每个消息被保存到一个单独的文件,名称是由一个可自定义的前缀参数,ROS时间的消息,和以PCD扩展的文件。

那么我们使用一个简单的例子来实现在ROS中进行平面的分割,同时注意到使用的数据转换的使用

/**************************************************************************
关于使用pcl/PointCloud<T>的举例应用。这一类型的数据格式是PCL库中定义的一种数据格式
这里面使用了两次数据转换从 sensor_msgs/PointCloud2 到 pcl/PointCloud<T> 和 
                       从 pcl::ModelCoefficients 到 pcl_msgs::ModelCoefficients.
************************************************************************/
#include <iostream>
//ROS
#include <ros/ros.h>
// PCL specific includes
#include <sensor_msgs/PointCloud2.h>
#include <pcl_conversions/pcl_conversions.h>
#include <pcl/ros/conversions.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>

#include <pcl/io/pcd_io.h>

//关于平面分割的头文件
#include <pcl/sample_consensus/model_types.h>   //分割模型的头文件
#include <pcl/sample_consensus/method_types.h>   //采样一致性的方法
#include <pcl/segmentation/sac_segmentation.h>  //ransac分割法

ros::Publisher pub;

void 
cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
{
  // 将点云格式为sensor_msgs/PointCloud2 格式转为 pcl/PointCloud
  pcl::PointCloud<pcl::PointXYZ> cloud;
  pcl::fromROSMsg (*input, cloud);   //关键的一句数据的转换

  pcl::ModelCoefficients coefficients;   //申明模型的参数
  pcl::PointIndices inliers;             //申明存储模型的内点的索引
  // 创建一个分割方法
  pcl::SACSegmentation<pcl::PointXYZ> seg;
  // 这一句可以选择最优化参数的因子
  seg.setOptimizeCoefficients (true);
  // 以下都是强制性的需要设置的
  seg.setModelType (pcl::SACMODEL_PLANE);   //平面模型
  seg.setMethodType (pcl::SAC_RANSAC);    //分割平面模型所使用的分割方法
  seg.setDistanceThreshold (0.01);        //设置最小的阀值距离

  seg.setInputCloud (cloud.makeShared ());   //设置输入的点云
  seg.segment (inliers, coefficients);       //cloud.makeShared() 创建一个 boost shared_ptr
  

 // pcl_msgs::fromROSMsg(const sensor_msgs::PointCloud2 &, pcl::PointCloud<T>&);  
  //pcl::io::savePCDFileASCII("test_pcd.pcd",cloud);

  // 把提取出来的内点形成的平面模型的参数发布出去
  pcl_msgs::ModelCoefficients ros_coefficients;
  pcl_conversions::fromPCL(coefficients, ros_coefficients);
  pub.publish (ros_coefficients);
}

int
main (int argc, char** argv)
{
  // Initialize ROS
  ros::init (argc, argv, "my_pcl_tutorial");
  ros::NodeHandle nh;

  // Create a ROS subscriber for the input point cloud
  ros::Subscriber sub = nh.subscribe ("input", 1, cloud_cb);

  // Create a ROS publisher for the output model coefficients
  pub = nh.advertise<pcl_msgs::ModelCoefficients> ("output", 1);

  // Spin
  ros::spin ();
}

在这里我们的input就是要订阅的话题/camera/depth/points

我们在rosrun 的时候注明input:=/camera/depth/points的这样就可以使用kienct发布的点云数据,同时你也可以指定点云的数据

 

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
ROS:pluginlib
在计算机领域,插件是很常用的术语。插件是一种模块化的软件,可以在现有应用软件的基础上增加一些新的功能。
0 0
ROS小技巧
ROS小技巧
0 0
ROS Melodic中costmap2D详解(下)
ROS Melodic中costmap2D详解(下)
0 0
ROS Melodic中costmap2D详解(上)
ROS Melodic中costmap2D详解(上)
0 0
PCL中使用FLANN库(2)
接着上一篇的介绍继续 关于在使用readHeader函数读取点云数据头的类型的代码(Read a point cloud data header from a PCD file.) pcl::PCLPointCloud2 cloud; int version; Eigen:...
1694 0
PCL中使用FLANN库(1)
FLANN库全称是Fast Library for Approximate Nearest Neighbors,它是目前最完整的(近似)最近邻开源库。不但实现了一系列查找算法,还包含了一种自动选取最快算法的机制,在一个度量空间X给定一组点P=p1,p2,…,pn,这些点必须通过以下方式进行预处理,给第一个新的查询点q属于X,快速在P中找到距离q最近的点,即最近邻搜索问题。
1631 0
VS2017安装PCL1.8.1
很多使用在windows环境下编译和使用PCL,这样让我想试试,所以就迫不得已的放弃使用Ubuntu环境,但是我还是建议使用Ubuntu系统,毕竟在Ubuntu下几条命令就搞定了,为了迎合在window使用PCL开发kinect,今天就试着在vS下配置和使用PCL,习惯了一边安装一边记录,首先安装VS2017,直接就是百度的界面提示所安装的VS2017 (1)下载PCL-1.
1905 0
如何在ROS中使用PCL—数据格式(1)
在ROS中点云的数据类型 在ROS中表示点云的数据结构有: sensor_msgs::PointCloud      sensor_msgs::PointCloud2     pcl::PointCloud 关于PCL在ros的数据的结构,具体的介绍可查 看            wiki.
1432 0
ROS关于cv_brige的使用
最近想使用OpenCV 和ROS实现点云的拼接,实现三维重建,那么在学习了kinect的基本的使用方法以后我们知道,直接使用ROS 的包即可得到点云,深度图,rgb图等信息, roslaunch openni_launch openni.launch(深度图彩色图,还有点云都获取了) rosrun openni_camera openni_node   (深度图与彩色图) 那么实现点云的拼接就需要使用cv_bridge把ROS 的数据格式转为Opencv可以使用的数据格式。
1222 0
ROS(8):Lubuntu下openCV 开发
本文的原文连接是: http://blog.csdn.net/freewebsys/article/details/48379799 未经博主允许不得转载。 博主地址是:http://blog.csdn.net/freewebsys 1,关于openCV OpenCV于1999年由Intel建立,如今由Willow Garage提供支持。OpenCV是一个基于(开源
1211 0
+关注
being_young123
SLAM 三维视觉的点云处理 概率机器人 多视图几何
文章
问答
文章排行榜
最热
最新
相关电子书
更多
低代码开发师(初级)实战教程
立即下载
阿里巴巴DevOps 最佳实践手册
立即下载
冬季实战营第三期:MySQL数据库进阶实战
立即下载