Hadoop MapReduce概念学习系列之MapReduce模型(十二)

简介:

在并行计算领域最著名的就是MPI模型,MPI是一种消息传递编程模型,在大规模科学计算领域已经成功应用了数年,而MapReduce则是一种近几年出现的相对较新的并行编程技术,但是MapReduce计算模型也是建立在数学和计算机科学基础上的,实践已经证明这种并行编程模型具有简单、高效的特点,最为重要的两个概念就是Map和Reduce.最基本的处理思想就是“分而治之,然后归约”。Hadoop会将一个大任务分解为可以同时执行的多个小任务,从而达到并行计算的目的。举个简单的例子,对于一个大型任务,单机处理需要1024分钟,而分解为1024个子任务并行执行就可在1分钟完成处理。在对处理的数据集的要求上,相比于传统关系数据库的结构化数据,MapReduce模型的Hadoop框架适合半结构化或非结构化的数据。

  Hadoop通过自动分割将要执行的问题(程序)、拆解成Map(映射)和Reduce(化简)的方式,其分解过程的实质是将问题分为几个部分,划分为可以应用于程序的数据,再将数据分解,然后对分解的数据进行并行操作,在自动分割后通过Map程序将数据映射成不相关的区块,分配(调度)给大星的i十算机进行处理以达到分散运算的效果,再通过Reduce程序将结果汇总整合,输出开发者需要的结果。  

  Hadoop向用户提供了一个规范化的MapReduce编程接口,用户只需要编写Map和Reduce函数,这两个函数都是运行在键-值对基础上的,数据的切分,节点之间的通信协调等全部由Hadoop框架木身来负责。一般一个用户作业提交到Hadoop集群后会根据输入数据的大小并行启动多个Map进程及多个Reduce进程(也可以是0个或者1个)来执行.MapReduce也具有弹性适应性,小数据和大数据仅仅通过调整节点就可以处理,而不需要用户修改程序MapReduce模型处理流程如下图所示。

  上图就是MapReduce的数据处理流程图,在Map之前会对输入的数据有split的过程,默认split就是写人数据时的逻辑块,每一个块对应一个split,一个split就对应一个Map进程,正是split保证了任务的并行效率。在Map之后还会有shuffe和sort的过程.shuffle简单描述就是一个Map的输出应该映射到哪个Reduce作为输入,sort就是指在Map运行完输出后会根据输出的键进行排序。这两个处理步骤对于提高Reduce的效率及减小数据传输的压力有很大的帮助。
从本质上讲MapReduce借鉴了函数式程序设计语言的设计思想,其软件实现是指定一个Map函数,把键值对(key/value)映射成新的键值对(key/value),形成一系列中间结果形式的键值对(key/value ),然后把它们传给Reduce(归约)函数,把具有相同中间形式key的value合并在一起。Map和Reduce。函数具有一定的关联性。其算法描述为:

  Map(k, v) ->list(k1,v1)
Reduce(k1,list(v1)) ->list (v1)
在Map过程中将数据并行,即把数据用映射函数规则分开,而Reduce则把分开的数据用归约函数规则合在一起,即Map是个分的过程,Reduce则对应着合。

 

 

 

本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5080590.html,如需转载请自行联系原作者

相关文章
|
7月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
159 2
|
5月前
|
数据采集 分布式计算 Hadoop
使用Hadoop MapReduce进行大规模数据爬取
使用Hadoop MapReduce进行大规模数据爬取
|
7月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
195 1
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
220 0
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
95 0
|
7月前
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
138 0
|
2月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
195 79
|
7月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
352 6
|
5月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
238 4
|
6月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
324 2

相关实验场景

更多